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ABSTRACT

The problem considered is the random-accessing by very many transmitters

of T common receiver over a time-slotted collision-type channel with feedback.

A collision-resolution algorithm (CRA) is a protocol for the transmission and

retransmission of packets such that, after a collision, all transmitters even-

tually and simultaneously learn that all the colliding packets have been suc-

cessfully retransmitted. Focus is placed on a CRA due to Capetanakis (the

CCRA) and a slight modification thereof (the MCCRA).

The fundamental (traffic-independent) properties of the CCRA and MCCRA are

derived by means of a recursive analysis, with emphasis on the mean and variance

of the number of slots required to resolve a collision among N packets. These

results are then used to analyze by a Markovian approach the performance of

various random-access algorithms, built upon the CCRA and MCCRA, for the case

of Infinitely many identical sources generating Poisson traffic. The maximum

stable throughput is determined for each random-access algorithm, and tight up-

per and lower bounds are developed for the delay-throughput characteristic of

the "obvious" random-access algorithm built upon the CCRA.

The previous analyses assumed delayless propagation, noiseless feedback,

and a forward channel that was noiseless except for collisions. This ideal

case analysis is extended to incorporate propagation delays and channel errors.

The CCRA is shown to be impervious to such errors, but the MCCRA is shown to

0 be extremely sensitive to channel errors. The use of carrier-sensing to in-

crease the maximum stable throughput is analyzed.

Throughout this report, the analysis is mathematically rigorous and makes

no appeal to the hypothesis of "statistical equilibrium" that has characterized

most studies of random-access systems.
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1. INTRODUCTION

Communications engineers have a long acquaintance with the "multiple-access"

problem, i.e., the problem of providing the means whereby many senders of in-

formation can share a common communications resource. The "classical" solution

han been to do some form of multiplexing (e.g., time-division multiplexing (TDM)

or frequency-division multiplexing (FDM) in order to parcel out the resource

equitably among the senders.) A fixed division of the resources, however, be-

comes inefficient when the requirements of the users vary with time. The clas-

sical "fix" for the multiplexing solution is to add some form of demand-assign-

ment so that the particular division of resources can be adapted to meet the

changing requirements. Such demand-assigned multiplexing techniques have proved

their worth in a myriad of multiple-access applications.

A second solution of the multiple-access problem is to employ some form of

random-access, i.e., to permit any sender to seize the entire communications

resource when he happens to have information to transmit. The random-access

solution is actually older than the multiplexing solution. For instance, the

technique by which "ham" operators share a particular radio frequency channel

2 is a random-access one. If two hams come up on the channel at virtually the
4

same time, their transmissions interfere. But the inherent randomess in human

actions ensures that eventually one will repeat his call well enough in advance

of the other that the latter hears the former's signal and remains quiet, allow-

ing the former to seize the channel. Moreover, essentially the same random-

access technique is used by many people around the same table to communicate

t with one another over the same acoustical channel.

A better name for the time-division multiplexing (either with-or without

demand assignment) solution to the multi-access problem might be scheduled-

access. Any sender knows that eventually he will be granted sole access to

!1
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the channel, perhaps to send some information or perhaps to ask f or a larger

share of the resources. The key consequence is that the resources will be

wasted during the period that he is granted sole access when in fact he has

nothing to say. Thus, scheduled-access techniques tend to become inefficient

when there are a large number of senders, each of which has nothing to say most

of the time. But this is just the situation where random-access techniques tend

to become efficient.

The computer age has given rise to many multiple-access situations in which

there are a large number of senders, each of which has nothing to say most of

the time. One such situation, namely the problem of communicating from remote

terminals on various islanids of Hawaii via a common radio channel to the main

computer, led to the invention by Abramson [1] of the first formal random-

access algorithm, now commonly called pure Aloha. Here it is supposed that

transmitters can send data only in packets of some fixed duration, say T seconds.

In pure Aloha, a transmitter always transmits such a packet at the moment it is

presented to the transmitter by its associated information source. If no other

transmitter is active during this T second transmission, then the packet is

successfully received. Otherwise, there is a "collision" that is assumed to

destroy all the packets that overlap. It is further supposed that, via some

form of feedback, the transmitters discover whether or not their packets suffer

collisions. When a collision occurs, the packets must be retransmitted. To

avoid a repetition of the same collision, pure Aloha specifies that after a

collision each transmitter involved randomly selects a waiting time before it

again retransmits its packet. Assuming a Poisson traffic model and "statisti-

cal equilibrium," Abramson showed that pure Aloha had a maximum "throughput" of

2 .184, computed as the fraction of time on the channel occupied by success-

fully transmitted packets. it was soon noticed by Roberts (2] that the maximum

2



throughput could be doubled tol - .368 by "slotting time" into T second in-
a

tervals and requiring that the transmission of a packet be slightly delayed (if

necessary) to coincide with a slot. This modification to Abramacios algorithm

is now known as the slotted-Aloha random-access algorithm.

in his 1970 paper that first proposed the pure Aloha algorithm, Abramson

introduced the hypothesis of "statistical equilibrium" in order to analyze the

algorithm's performance for a Poisson traffic model. Essentially, this hypo-

thesis states that the algorithm will eventually reach a steady-state situation

in which the traffic from retransmitting of messages will form a stationary

Poisson process that is independent of the new message traffic. It is precisely

this assumption that leads to the maximum throughput bounds of 1/2e and l/e for

pure Aloha and slotted-Aloha, respectively. Abramson's statistical equilibrium

assumption was a bold one and was best justified by the fact that, without it,

the analytical tools appropriate f or treating his algorithm did not exist. As

time went on, however, comunications engineers generally forgot that there was

neither mathematical nor experimental justification for this hypothesis of "sta-

tistical equilibrium," and came to accept the numbers 1/2e and l/e as the "ca-

pacities" of the pure Aloha channel and slotted Aloha channel, respectively, for

the Poisson traffic model. Even more unfortunately, most workers continued to

invoke the hypothesis of "statistical equilibrium" to "prove" that their par-

ticular rococo extension of the Aloha algorithm had superior delay-throughput

properties compared to all previous ones, even though the character of their

refinements should have made the hypothesis all the more suspect.

The next breath of truly fresh air in the research on random-access algo-

rithms came in a 1977 M.I.T. doctoral dissertation by Capetanakis 13].

Capetanakis departed from the path beaten by Abramson in two Important ways.

First, he showed how, without prior scheduling or central control, the



transmitters with packets to retransmit could make use of the known past his-

tory of collisions to cooperate in getting those packets through the channel.

Second, he eliminated statistical equilibrium as an hypothesis by proving ma-

thematically that his algorithm would reach a steady-state, albeit a highly

non-Poisson one for the retransmitted traffic, when the new packet process was

Poisson with a rate less than some specific limit. It must have come as a

bombshell to many that Capetanakis could prove that his scheme achieves through-

puts above the 1/e "barrier" for slotted-Aloha.

The aim of this paper is to illuminate the key features of Capetanakis'

work and the subsequent work by others based on it, and to expose some analyti-

cal methods that appear useful in such studies. We also introduce a few new

results of our own.

In Section 2 we formulate the concept of a "collision-resolution algorithm"

and treat Capetanakis' algorithm within that context. In Section 3, we catalog

those properties of the Capetanakis collision-resolution algorithm that are in-

dependent of the random process describing the generation of new packets. Then,

in Section 4, we use these properties to analyze the performance of the

Capetanakis random-access algorithm (and its variants) for the Poisson traffic

model under idealized conditions. In Section 5, we study quantitatively the ef-

fects of relaxing the idealized assumptions to admit propagation delays, channel

errors, etc. Finally, we summarize the main conclusions of our study and review

the historical development of the central concepts, hopefully with due credit to

the original contributors.

'a.Y~ , A?



2. COLLISION-RESOLUTION ALGORITHMS

2.1 General Assumptions

We wish to consider the random-accessing by many transmitters of a

common receiver under the following idealized conditions:

(i) The forward channel to the receiver is a time-slotted collision-type

channel, but is otherwise noiseless. The transmitters can transmit only in

"packets" whose duration is one slot. A "collision" between two or more packets

is always detected as such at the receiver, but the individual packets cannot be

reconstructed at the receiver.

(ii) The feedback channel from the common receiver is a noiseless broadcast

channel that informs the transmitters immediately at the end of each slot whether

(a) that slot was empty, or (b) that slot contained one packet (which was thus

successfully transmitted), or (c) that slot contained a collision of two or

more packets (which must thus be retransmitted at later times.)

(iii) Propagation delays are negligible, so that the feedback information for

slot i can be used to determine who should transmit in the following slot.

In later sections, we shall relax each of these conditions to obtain a more

realistic model of a random access system. We shall see, however, that the

analysis for the idealized case can be readily generalized to incorporate more

realistic assumptions.

2.2 Definition of. a Collision-Resolution Algorithm

By a collision-resolution algorithm for the random-accessing of a colli-

sion-type channel with feedback, we mean a protocol for the transmission and re-

transmission of packets by the Individual transmitters with the property that

after each collision all packets involved in the collision are eventually re-

transmitted successfully and all transmitters (not only those whose packets

V collided) eventually and simultaneously become aware that these packets have

+ Mi. .,,......



been successfully retransmitted. We will say that the collision is resolved

precisely at the point where all the transmitters simultaneously become aware

that the colliding packets have all been successfully retransmitted.

It is not at all obvious that collision-resolution algorithms exist. The

Aloha algorithm, for instance, is not a collision-resolution algorithm as one

can never be sure that all the packets involved in any collision have been

successfully transmitted. Thus, the recent discovery by Capetanakis [3-5] of a

collision-resolution algorithm was a surprising development in the evolution of

random-access techniques whose full impact has yet to be felt.

It might seem that a collision-resolution algorithm would require a freeze

after a collision on the transmission of new packets until the collision had

been resolved. In fact, Capetankis' algorithm does impose such a freeze. How-

ever, as we shall see later, one can devise collision-resolution algorithms

that incorporate no freeze on new packet transmissions - another somewhat sur-

prising fact.

2.3 The Capetanakis Collision-Resolution Algorithm (CCRA)

In [3,4], Capetanakis introduced the collision-resolution algorithm of

central interest in this paper and which he called the "serial tree algorithm."

We shall refer to this algorithm as the Capetanakis collision-resolution algo-

rithm (CCRA). The CCRA can be stated as follows:

CCRA: After a collision, all transmitters involved
flip a binary feir coin; those flipping 0 retransmit
in the very next slot, those flipping 1 retransmit in
the next slot after the collision (if any) among those
flipping 0 has been resolved. No new packets may be
transmitted until after the initial collision has been
resolved.

The following example should both clarify the algorithm and illustrate its main

features.

Suppose that the initial collision is among 4 transmitters, as shown in

6
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Figure 2.1. For convenience, we refer to these transmitters as A, B, C and D.

After the collision in slot 1, all four of these transmitters flip their

binary coins - we suppose that B and C flip 0 while A and D flip 1. Thus B and

C flip again at the end of slot 2 - we suppose that C flips 0 while B flips 1.

Thus, only C sends in slot 3 and his packet is now successfully transmitted.

B thus recognizes that he should send in slot 4, and his packet is now success-

fully transmitted.

It is illuminating to study the action thus far in the algorithm on the

tree diagram in Figure 2.2 in which the number above each node indicates the

time slot, the number inside the node indicates the feedback information for

that time slot (0 - empty slot, 1 - single packet, > 2 - collision), and the

binary numbers on the branches coming from a node indicate the path followed by

these transmitters that flipped that binary number after the collision at that

node. Thus, collisions correspond to intermediate nodes in this binary rooted

tree since such nodes must be extended by the algorithm before the collision

at that node is resolved. On the other hand, empty slots or slots with only

one packet correspond to terminal nodes in this binary rooted tree because after

the corresponding transmission all transmitters simultaneously learn that any

transmitter sending in that slot (i.e., zero or one transmitters) has success-

fully transmitted his message. Thus, a collision is resolved when and only

when the algorithm has advanced to the point that the corresponding node forms

the root node of a completed binary subtree. Thus, from Figure 2.2, which il-

lustrates the same situation as Figure 2.1, we see that the collision in slot 2

is resolved in slot 4. Thus, transmitters A and D, who have been patiently

waiting since the collision in slot 1, recognize that they should now retransmit

in slot 5.

After the collision in slot 5, we suppose that A and D both flip 1. Thus,



1 2 3 4 5 6 7 7 9 10 11

Fig. 2.1: Example of a Collision Resolution Interval for the CCRA.

3

1

2 0

11

Fig. 2.: Tree Diagram for ah Collision Resolution Interval oit the. 2.1.A
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slot 6 is empty, so A and D again recognize that they should retransmit in slot

7. After the collision in slot 7, we suppose that A and D both flip 0. Hence

they both retransmit in slot 8. After the collision in slot 8, we-suppose that

A flips 0 and D flips 1. Thus, A successfully transmits in slot 9 and D suc-

cessfully transmits in slot 10. All four transmitters in the original collision

have now transmitted successfully, but the collision is not yet resolved. The

reason is that no one can be sure that there was not another transmitter, say E,

who transmitted in slot 1 then flipped 1 and who retransmitted in slot 5 and

then flipped 1 and who retransmitted again in slot 7 and then flipped 1 and who

thus is now waiting to retransmit in slot 11. It is not until slot 11 proves to

be empty that the original collision is finally resolved. All transmitters (not

just the four in the original collision) can grow the tree in Figure 2.2 from

the feedback information, and thus all transmitters now simultaneously learn

that all the packets in the original collision have now been successfully trans-

mit ted.

Because a binary rooted tree (i.e., a tree in which either 2 or no branches

extend from the root and from each subsequent node) has exactly one more ter-

minal node than it has intermediate nodes (or two more terminal nodes then in-

termediate nodes excluding the root node), we have the following:

CCRA Property: A collision in some slot is resolved
precisely when the number of subsequent collision-
free slots exceeds by two the number of subsequent
slots with collisions.

For instance, from Figure 2.1 we see that the collision in slot 2 is resolved in

slot 4, the collision in slot 5 is resolved in slot 11, the collision in slot 1

is also resolved in slot 11, etc. Notice that the later collisions are resolved

sooner.

The above CCRA Property suggests a simple way to implement the CCRA due to

R. G. Gallager [6].

*9
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CCRA Implementation: When a transmitter flips 1
following a collision in which he is involved, he
sets a counter to 1, then increments it by one
for each subsequent collision slot and decrements
it by one for each subsequent collision-free slot.
When the counter reaches 0, the transmitter re-
transmits in the next slot.

Additionally, all transmitters must know when the original collision (if any)

has been resolved as this determines when new packets may be sent. For this

purpose, it suffices for each transmitter to have a second counter which is

set to 1 just prior to the first slot, then incremented by one for each sub-

sequent collision slot and decremented by one for each subsequent collision-

free slot. When this second counter reaches 0, the original collision (if any)

has been resolved.

We shall refer to the period beginning with the slot containing the original

collision (if any) and ending with the slot in which the original collision is

resolved (or ending with the first slot when that slot is collision-free) as the

collision-resolution interval (CRI). Our main interest will be in the statis-

tics of the length of the CRI, i.e., of the number of slots in the CRI. Note

that the CRI illustrated by Figure 2.1 (or, equivalently, by Figure 2.2) has

length 11 slots. Since 4 packets are successfully transmitted in this CRI, its

"throughput" is 4/11= .364 packets/slot. We shall soon see that this is quite

typical for the throughput of a CRI with 4 packets in the first slot when the

CCRA is used to resolve the collision.

It should also be noted that, in the implementation of the CCRA, the feed-

back information is used only to determine whether the corresponding slot has a

collision or is collision-free. It is not necessary, therefore, to have the

feedback information distinguish empty slots from slots with one packet when

the CCRA is used.

10
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2.4 The Modified Capetanakis Collision-Resolution AlTorithm (See also 17].)

Referring to the example in Figure 2.2, we see that after slot 6 proves

to be empty following the collision in slot 5, all transmitters not know that

all the packets which collided in: slot 5 will be retransmitted in slot 7. Thus,

all- transmitters know in advance- that slot 7 will contain a collision. (Note

that this statement will only be true when the feedback information distinguishes

empty slots from slots with one packet.) Thus, it is wasteful actually to re-

transmit these packets in slot 7. The transmitters can "pretend" that this col-

lision has taken place and immediately flip their binary coins and continue with

the CCRA. The suggestion to eliminate these "certain-to-contain-a-collision"

slots in the CCRA is due to the author. We shall refer to the corresponding

algorithm as the modified Capetanakis collision-resolution algorithm (MCCRA).

The MCCRA may be stated as follows:

MCCRA: Same as the CCRA algorithm except that
when the feedback indicates that a slot in which
a set of transmitters who flipped 0 should re-
transmit is in fact empty, then each transmitter
involved in the most recent collision flips a
binary fair coin. those flipping 0 retransmit in
the very next slot, those flipping 1 retransmit
in the next slot after the collision (if any)
among those flipping 0 is resolved (subject to
the exception above.)

Figure 2.3 gives the binary tree for a CRI containing two packets in the

original collision and for which both transmitters flipped 1 on the first two

tosses of their binary coin, but one flipped a 0 and the other a 1 on their

third toss. The nodes labelled "skip" and having no slot number written above

them correspond to points where the feedback indicates that certain transmitters

should immediately flip their binary coins to thwart a certain collision. Note

that this CRI has length 5, but would have had length 7 if the unmodified CCRA

Sr had been used because then the nodes labelled "skip" would become collision

slots.

L .1
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We observe next that, In the 14CCRA, an .epty slot corresponding to retrans-

missions by a set of transmitters who flipped 0 is precisely the same as an

empty slot that is separated from the most recent collision only by empty slots.

This follows from the facts that transmitters who flip 0 always send in the slot

Imediately after their flip is made, and that a flip is made only after a col-

lision or after a "skipped collision," I.e., after an empty slot corresponding

to retransmissions by a set of transmitters who had flipped 0. This observation

justifies the following:

MCCRA Implementation: Each transmitter has a
flag F that is initially 0 and that he sets to
1 after a collision slot and sets to 0 after a
slot with one packet. When a transmitter flips
1 following a collision in which he is involved,
he sets a counter to 1, then increments it by
one for each subsequent collision, decrements
it by 1 for each subsequent slot with one pocket,
and also decrements it by one for each subsequent
empty slot that occurs with F - 0. If his
counter is I after an empty slot that occurs
with F - 1 he flips his binary coin and decre-
sents his counter by one if and only if 1 was
flipped. When the counter reaches 0, the trans-
mitter retransmits in the next slot.

Again the transmitters can use a second counter in conjunction with the

same flag to determine when the CRI is complete. This second counter is set

to 1 prior to the first slot, then incremented by one for each subsequent col-

lision slot, decremented by one for each subsequent slot with one packet, and

also decremented by one for each subsequent empty slot that occurs with F - 0.

When this second counter reaches 0, the original collision (if any) has been

resolved.

Because the MCCRA is merely the CCRA modified to eliminate slots where

collisions are certain to occur, it will always perform at least as well as

the latter algorithm. In the MCCRA, we appear to have "gotten something for

nothing." This is not quite true, however, for two minor reasons:

12
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(I) The MCCRA, unlike the CCRA, requires the
feedback information to distinguish between
empty slots and slots with one packet.

(Ii) The MCCRA is slightly more complex to tIm-
plement than the CCRA because of the necessity
for the "flag" in the former algorithm.

But. there is a third and far stronger reason for hesitation in preferring the

MCCRA over the CCRA that we will subsequently demonstrate but that is not ap-

parent under the idealized conditions considered in this section, namely:

(iii) When channel errors can occur, the MCCRA
can suffer deadlock, i.e., reach a situation
where the CRI never terminates and no packets
are ever transmitted after some point.

1
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3. TRAFFIC-INDEPENDENT PROPERTIES OF THE CAPETANAKIS COLLISION-RESOLUTION

ALGORITHM

3.1 Definitions

In both the Capetanakis collision-resolution algorithm (CCRA) and its

modification, when there is a collision in the first slot of a collision-resolu-

tion interval (CRI) no new packets may be transmitted until the CRI is com-

pleted. We shall let X denote the number of packets transmitted in the first

slot of some CRI, and let Y denote the length (in slots) of this same CRI.

Given X, Y depends only on the results of the coin tosses performed Internally

in the algorithms, and hence is independent of the traffic statistics that led

to the given value of X. We can thus refer to any statistic of the CRI con-

ditioned upon the value of X as traffic-independent. In this section, we shall

study those traffic-independent properties of the CCRA and the MCCRA that are

of greatest importance for the performance of random-access algorithms that in-

corporate these algorithms. The first and most important of these is the con-

ditional mean CRI length, L., defined as

IN - E(YIXN). (3.1)

The conditional second moment of CRI length, SN9 defined by

s - E(Y2 IX-N), (3.2)

is also of fundamental Importance. The conditional variance of CRI length, VN,

defined by

VN = Var(YIX=N), (3.3)

will prove to be more tractable than SN directly, but of course is related to

SN by
VN= SN- (N) 2  

(3.4)

We now investigate these traffic-independent quantities in detail for the CCRA.

14
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3.2 Intuitive Analysis

Our aim here is to determine the coarse dependence of L3 , VN and SN on N

for the CCRA as a guide to a subsequent precise analysis. To do this, 'ie sup-

pose that N - 2n is very large. Then, as shown in Figure 3.1, there will be

a collision in slot 1 of the CRI, following which very close to half of the

transmitters will flip 0 and half will flip 1. Thus

L2n' 1 + 2L, n >> 1 (3.5)

mince the expected number of slots needed to resolve the collision in slot 2 of

the approximately n transmitters who flipped 0 is Ln, following which the e. -

pected number of slots to resolve the subsequent collision of the approximately

n transmitters who flipped 1 is also L . Considered as an equality, (3.5) isn

a recursion whose solution is L =N - 1 for an arbitrary constant a. Thus,

we conclude that

LN - 1, N >> 1 (3.6)

describes the coarse dependence of LN on N, which whets our appetite to find

the constant a. In fact, we will soon see that (3.6) is remarkably accurate

even for small values of N.

From Figure 2.1 and the fact that the number of slots needed to resolve the

collision among the n transmitters who flipped 0 is independent of the number of

slots needed to resolve the collision among the n transmitters who flipped 1, we

see that

V2  2Vn , n >> 1. (3.7)

This recursion forces the conclusion that

VN - ON, N >> 1 (3.8)

for some constant B. We shall soon see that (3.8) likewise is quite accurate

*even for rather small N. Finally, (3.4), (3.6) and (3.8) imply
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Fig. 3.1: Typical Action of the CCRA in First
Slot of the CR1 When n Is Large.

Fig. 3.2: General Action of the CCRA in First
Slot of CR1 when N Exceeds 1.
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SN a2N2 _ (2a-B)N + 1, N >> 1, (3.9)

which completes our intuitive analysis.

3.3 Conditional Mean of CRI Length

We now give for the CCRA a precise analysis of the expected CRI length,

LN, iven that X - N packets are transmitted in the first slot. When N is 0 or

1, the CR1 ends with its first slot so that

L0 - L M 1. (3.10)

When N > 2, there is a collision in the first slot. The probability that ex-

actly i of the colliding transmitters flip 0 (as depicted in Figure 3.2) is just

PN() -(N) 2 N, (3.11)

in which case the expected CRI length is just 1 + Li + LNi. Hence, it follows

that N
L4 - 1 + E (Li+LNi)PN(i)

iO

N
- 1 + 2 ELiPN() (3.12)

i-0

where we have used the fact that pN(i) - pN(N-i). Solving for LN gives the re-

cursion N-i
LN - [1+2 E LipN()]/(l - 2 - N+ ) (3.13)

i-0

which holds for all N > 2. The required initial conditions are given in (3.10).

In Table 3.1, we give the first few values of LN as found from (3.13).

N I

0 1

1 1

2 5

3 23/3 f7.667

4 221/21c 10.524

5 13.419

6 16.313

Table 3.1 Expected CRI length for the CCRA
given N packets in the first slot.
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From Table 3.1, we can see that LN - LNi-z2.9 for N > 4. This suggests

that the constant a in (3.6) is about 2.9. In fact, we see from Table 3.1 that the

N >> 1 approximation LN 2 .9 a - 1 is already quite accurate for N > 3.

We now develop a technique for obtaining arbitrarily tight upper and lower

bounds on LN. We begin by choosing an arbitrary positive integer M. We seek

to find a constant, a UM, as small as possible, for which we can prove

LN < N-i , all N > M. (3.14)

(The first subscript on a is only to remind us that this constant appears in an
upper bound on IN.) By using the Kronecker delta 6,j defined to be 1 if i - j

and 0 if i j, we can rewrite (3.14) as

M-1
LN< MN - 1 + E 6iN(L-% +I), all N (3.15)

i=0

because the right side reduces to L for N < M. Substituting the bound (3.15)

for those L on the right in (3.13) and making use of the fact that
N-1 N

EU ipN(i) E iPN(i) - NPN(N)
i= 0 i= 0

we obtain 

V_

L No N < c u - 1 + 2 [ wL o ( L i-M i + ) P N ( i ) ] / ( 1 - 2 - N + l ) ( 3 . 1 6 )

It thus follows by induction that (3.14) holds for any a M such that the summa-

tion in square brackets on the right in (3.16) is nonpositive for all N > M, i.e.,

such that
M-1 M-1

(iM E:=iPN(i) > T, (Li+l)PN(i), N > M. (3.17)

The best upper bound is obtained by choosing a uM such that (3.17) holds with

equality in the "worst case," i.e., choosing

a uM sup [F%(N (LJ+l)/ Y (.Ei (3.18)
N> H WLi-O -o i/J

18
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By an entirely analogous argument, one can show inductively that

LS  _> ,RP- all N > M

holds for the choice

O& = [F, N (LiL+l) / E(D il (3.19)N_ M Li-O 1 -o

- For a given H, after one has calculated L for all i < M, it is a simple
i

matter numerically to find the maximizing N and minimizing N in (3.18) and

(3.19), respectively, and hence to determine aum and a P. Table 3.2 summarizes

these calculations and furnishes bounds on the "true coefficient" a in (3.6).

From the H - 5 case, we see that

2.8810 < a < 2.8867 (3.20)

so that in fact we know the value of a to three significant decimal digits. We

can also summarize the H - 5 results as

2.8810N - 1 < Ln < 2.8867N - 1 , N > 4. (3.21)

(The inductive argument for H - 5 guarantees that (3.21) holds for N > 5; by

checking against the values in Table 3.1, we find that (3.21) holds also for

N - 4.) For all practical purposes, the bounds in (3.21) are so tight as to be

tantamount to equalities, and we conclude that we now have determined LN for the

CCRA and are ready to move on to consider the conditional second moment of epoch

length. Before doing so, it is interesting to note (as was pointed out to us by

W. Sandrin of the Comsat Laboratories) that

2 2.8854 (3.22)

Ln2

which, together with the binary nature of the CCRA, lends support to the conjec-

ture that
2

mlia %m lima M 2 - (3.23)
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Maximizing Minimizing
M N in (3.18) a M N in (3.19)

2 3 2 2 O

3 3 G 2.8750 4

4 2.8965 14 2.8810 4

5 2.8867 8 2.8810

Table 3.2 Values of the coefficients UM and a M in the bounds

(3.18) and (3.19), respectively, for LN.

3.4 Conditional Variance and Second Moment of CRI Length

We now seek tight bounds on the conditional variance, VN - Var(YIX=N ) ,

and the conditional second moment, SN = E(Y2 IX-N), of the CRI length for the

CCRA. Letting X0 denote the number of transmitters who flip 0 after the colli-

sion in slot 1, we see from Figure 3.2 that

sN r (Y lX,XOi)pN(i)

i=0

N 2
N [Var(YIX-N,X0=i) + E (YIXN,X6-i)]PN(i)

i=0

N (IL~)2
E [Vi+VNi+(l+Li+LNi) 2PN(i)
i=0

N 2
N [2Vi+(l+Li+LNi) ]PN(i) (3.24)

i=o

for N > 2, where the next-to-last equality follows from the fact that the number

of slots used to resolve the collision (if any) among the i transmitters who

flipped 0 is independent of the number used to resolve the collision (if any)

among the N - i transmitters who flipped 1, and the last equality follows from

the fact that pN(i) PN(N-i). Combining (3.4) and (3.24), we obtain
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111-8

N [2N 21] -N+l)

VN ViPN(i) + (1+Lp (1-2 - ) (3.25)
i=O i=O

for N > 2, which is our desired recursion for VN . Because Y - 1 when X - 0 or

X - 1, the appropriate initial conditions are

V0 = VI M 0. (3.26)

Using the values of LN given in Table 3.1, we can use (3.25) to find the

values of VN given in Table 3.3, to which we have added the corresponding

values of SN found using (3.4). From Table 3.3, we see that the linear growth

of VN with N predicted asymptotically by (3.8) is already evident for N > 4,

the constant of proportionality being ;3.4.

N VN S N

0 0 1

1 0 1

2 8 33

3 88/9 - 9.78 68.56

4 13.53 124.2

5 16.93 197.0

6 20.32 286.3

Table 3.3 Variance and second moment
of CRI length for the CCRA
given N packets in the first
slot.

2
We can develop a simple lower bound on VN by noting that, because x is a

convex function, Jensen's inequality [8] together with (3.12) implies

N 2 2
N, (1+L+ _LNi) pN(i) > L1 " (3.27)
i=0

Substituting (3.27) in (3.25) gives the simple inequality

21
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111-9

N-i -N+l

VN > 2 E VipN(i)/(1-2- ). (3.28)
i-0

In the same manner as led to (3.19), we can use (3.28) to verify that

VN _  , N>M (3.29)

holds for the choice

kMinf (N1 NVii 1.N(3.30)N>M E L -OI

Table 3.4 gives the values of values of aim for 3 < M < 6.

Minimiz ing Maximizing
M OM N in (3.30) uMN in (3.36)

3 2.666 3 4

4 3.111 4 3.506 4

5 3.272 5 3.458 5

6 3.333 6 3.424 6

7 3.359 7 3.404 7

Table 3.4 Values of the coefficients and _uM in the

bounds (3.30) and (3.36), respectively, on VN.

To obtain an upper bound on VN, we first observe that

Li+L i< , 0 < i < N. (3.31)

A proof of (3.31) is unwardingly tedious and will be omitted, but its obvious-

ness can be seen from the fact that it merely states that the CCRA will do

better in processing two non-empty sets of transmitters in separate CRI's than

it would do if the two sets first were merged and then the CCRA applied. In

fact, it should be obvious from the tight bounds on LN developed in the previous

section that the right side of (3.31) will exceed the left by very close to unity

as soon as both i and N - i are four or greater, and this can be made the basis
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of a rigorous proof of (3.31). Next, we observe that (3.31) when i - 1 or

i - N - 1 can be strengthened to

+L. 1 < LN - 1, . (3.32)

as follows from the fact that L - 1 so that the right side of 3.32 will exceed

the-left by approximately a - 200.9 when N is four or greater - the validity

of (3.32) for N < 4 can be checked from Table 3.1.

Using (3.31), (3.32) and the fact that PN(1) = NPN(O) > 3 pN(O) for N > 3,

one easily finds

N 2 2
E (l+L,+LN-) PN(i) < (LN+l) , N > 3. (3.33)

i-0

Substituting (3.33) into (3.25) gives

VN < [2 f VP(i)+2LN+ (i-2-N+l), N > 3 (3.34)

which is our desired simple upper bound on VN. In the now familiar manner we can

use (3.34) to verify that

VN < N , N > M (3.35)

holds for the choice

~u sup J[iI vjl..t/[:(~f (3.36)

for M > 3, where here aM is any constant for which it is known that N <a m N - 1

for N > M. Taking a - 2.90 for M- 3 and a - 2.8867 for M > 4 (as were justified

in the previous section), (3.36) results in the values of OuM as given in Table

3.4.

The M - 7 cases in Table 3.4 provide the bounds

3.359N < VN < 3.40 4 N N> 4. - (3,37)

The validity of (3.36) for N < M, i.e., for N - 4, 5 and 6 may be directly checked

from Table 3.3. Although (3.37) is not quite so tight as our corresponding
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bounds in (3.21) on LN, it is tight enough to confirm our earlier suspicion

that 8su3.4 and more than tight enough for our later computations. From

(3.21), (3.37) and (3.4), we find the corresponding bounds on S N to be

8.300N 2 - 2.403N+1 < SN < 8.333N2 - 2.369N+1, N > 3. (3.38)2 2 2

which, since the coefficient of N2 is ct and auM on the left and right sides,

respectively, shows that the tightness of these bounds on SN depends much more

on the tightness of (3.21) than on that of (3.37).

3.5 Conditional Distribution of CRI Length

In this section, we consider the probability distributions, PY¥X(LIN),

for the CRI length Y given that X - N transmitters collide in the first slot

and the CCRA is used. The cases X - 0 and X - 1 are trivial and give

PYIx(lO) - P Ix(l:l) - 1. (3.39)

For N > 2, however, every sufficiently large odd integer is a possible value of

i. That Y must be odd follows from the facts that a binary rooted tree always

has an odd number of nodes and that the slots in a CRI for the CCRA corresponds

to the nodes in such a tree.

Writing P(2m+lIN) for brevity in place of PyIX(2m+I IN), we note first that

P(312) - 1/2, (3.40)

because with probability 1/2 the two transmitters colliding in slot 1 will flip

different values and the CRI length is then 3. When these two transmitters flip

the same value, then a blank slot together with another collision occurs and

hence
~1

P(2m+112) -1 P(2(m-l)+112) m > 2. (3.41)

Equation (3.41) is a first-order linear recursion whose solution for the initial

condition (3.40) is

P(2m+l 12) 2' , m > 1, (3.42)

which shows that (Y-1)/2 is geometrically distributed when X - 2.

24

~i



When X - 3, the minimum value of Y is 5 and occurs when and only when the

three transmitters do not all flip the same value after the initial collision

and the two who flip the same value then flip different values after their sub-

sequent collision. This reasoning gives

11(513) -31 3 (3.43)

In general, we see that
P(2m+113) P(2(m-1)+113) +! P(2(m-1) 12)

for m > 3. With the aid of (3.41) this can be rewritten
1 --

P(2m+l 13) - - P(2(m-l)+113) - 3(2 - - ) , > 3. (3.44)

Equation (3.43) is another first-order linear recursion whose solution for the

initial condition (3.43) is

P(2m+113) - 3 ( 2 -m)- 6 ( 4
-m) , m> 2. (3.45)

Continuing this same approach, one could find P(2m+lIN) for all N. However,

the number of terms in the resulting expression doubles with each increase of N

so that the calculation fast becomes unrewardingly tedious. The above distribu-

tions for N < 3, however, are sufficiently simple in form that we can and will

make convenient use of them in what follows.

This completes our analysis of the traffic-independent properties of the

CCRA, and we now turn our attention to the MCCRA.

3.6 Corresponding Properties for the Modified CCRA

We now briefly treat the traffic-independent properties of the modified

CCRA (MCCRA) that was introduced in Section 2.4. Using the same notation as

was used for the CCRA, we first note that (3.12) for the MCCRA becomes

N
LN - 1 + 2 I: LipN(i) - pV(O) (3.46)

i- 0

for N > 2, as follows again from Figure 3.2 and the fact that when none of the
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transmitters in the initial collision flip 0 [which occurs with probability

PN(0)] then only LN - 1 [rather than N] slots on the average are required to

resolve the "collision" that was certain. Solving (3.46) for L. gives the re-

cursion

LN - [1 + 2 E LipN(i) - PN(0)] /(12- ) (3.47)
1-0

which holds for all N > 2. The initial conditions are again

L0 - L 1 - 1. (3.48)

In Table 3.5, we give the first few values of LN as found from (3.47). Comparing

Tables 3.1 and 3.5, we see that the main effect of the slots saved by eliminating

collisions in the MCCRA is to reduce L2 from 5 to 9/2, and that this 10% savings

propagates only slightly diminished to LN with N > 2. We also note from

N

0 1

1 1

2 9/2

3 7

4 9.643

5 12.314

6 14.985

Table 3.5 Expected CRI length for the
MCCRA given N packets in the
first slot

Table 3.5 that LN- L.Il 2 .67 for N > 4.

Using precisely the same techniques as in Section 3.3, one easily finds for

the MCCRA that

.MN 1 < LN< a UMN- N > M (3.49)
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where a and aum are the infimum and supremum, respectively, for N > H of the

function

fN(00 -1 (N) Meil) - y] /E(i1 (3.50)

Forh - 5, these bounds become

2.6607N - 1 < _ < 2.6651N - 1 , N > 4 (3.51)

where the fact that the bounds also hold for N - H - 1 - 4 can be checked

directly from Table 3.5.

Equation (3.24), which gives SN for the CCRA, is easily converted to apply

to the HCCRA by noting that the only required change for the MCCRA is that

E2(yIX-N,X0-0) - (L0+LN)2 rather than (l+L+LN)2 because of the eliminated

slot, so that (3,24) is changed to
N 2-

SN 1 Z [2V + (l+Li+LNi)2 ]pN(i) - (2LN+3 )2 -N  (3.52)iwo

Beginning from (3.52), one can readily find the recursion for VN analogous to

(3.25), and then derive linear upper and lower bounds on VN as was done in

Section 3.4 for the CCRA. We shall, however, rest content with the bounds

(3.51) on LN, both because these are more important than those for VN and also

because our primary interest is in the CCRA rather than the MCCRA for the

reason stated above at the end of Section 2.4.
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4. RANDOM-ACCESS VIA COLLISION-RESOLUTION

4.1 The Obvious Random-Access Algorithm

We now consider the use of a collision-resolution algorithm as the key

part of a random-access algorithm for the idealized situation described in Sec-

tion 2.1. The principle is simple. To obtain a random-access algorithm from

a collision-resolution algorithm, one needs only to specify the rule by which

a transmitter with a new packet to send will determine the slot for its initial

transmission. Thereafter, the transmitter uses the collision-resolution al-

gorithm (if necessary) to determine when the packet should be retransmitted.

One such first-time transmission rule is the obvious one: transmit a new pac-

ket in the first slot following the collision-resolution interval (CRI) in

progress when it arrived. (Here we tacitly assume that no more than one new

packet arrives at any transmitter while a CRI is in progress.) We shall refer

to the random-access algorithm obtained in this way as the obvious random-access

algorithm (ORAA) for the incorporated collision-resolution algorithm. That the

ORAA may not be the ideal way to incorporate a collision-resolution algorithm

is suggested by the fact that, after a very long CRI, a large number of packets

will usually be transmitted in the next slot so that a collision there is vir-

tually certain. Nonetheless, the ORAA is simple in concept and mplementation,

and is so natural that one would expect its analysis to yield useful insights.

For brevity, we shall write CORAA and MCORAA to denote the ORAA's incor-

porating the Capetanakis collision-resolution algorithm (CCRA) and the modi-

fied CCRA, respectively. We shall analyze the CORAA and the MCORAA in some

detail before considering less obvious ways to incorporate collision-resolution

algorithms in random-access algorithms.

4.2 Intuitive Stability Analysis

We assume that the random-access system is activated at time t = 0
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with no backlog of traffic. The unit of time will be taken as one slot so that

the i-th slot is the time interval (ii+l], i - 0, 1,2.... . The new packet

process is a counting process Nt giving the number of new packets that arrive

at their transmitters in the interval (O,t]. Thus, Nt+T - Nt is the number of

new packets that arrive in the interval (t,t+T]. We assume that the new pac-

ket process is characterized by a constant X, the new packet rate, such that,

for all t > 0, (N t+T-N t)/T will be close to A with high probability when XT is

large. The action of the random-access algorithm on the arrival process N

generates another counting process Wt giving the number of packets that have

arrived at their transmitters in the interval (O,t] but have not been success-

fully transmitted in this interval. The random-access algorithm is said to be

stable or unstable according as whether Wt remains bounded or grows without

bound with high probability as t increases.

The stability properties of the CORAA can be ascertained from the follow-

ing intuitive argument. From (3.21) and (3.37), we see that both the mean

LN and variance V of CRI length for the CCRA grow linearly with the number, N,

of packets in the first slot. Thus, by Tchebycheff's inequality, the CRI

length will be close to its mean LN 2.8 9N with high probability when N is

large. Now suppose some CRI begins in slot i and that Wi is large. By the

first-time transmission rule for the CORAA, all Wi packets will be transmitted

in the first slot of the CRI so that the CRI length Y will be close to 2.89 Wi

slots with high probability. But close to XY - 2.89X Wi new packets will

with high probability arrive during the CR1 so that

WH+¥  2.89A W (4.1)
i+Y i

with high probability. Thus, W will remain bounded with high pr6bability,

ti.e., the CORAA will be stable, if

1
A < 2.89 .346 packets/slot.
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Conversely, provided only that the arrival process has "sufficient variability"

so that Wi can in fact be large, (4.2) shows that the CORMA will be unstable for

>1
X 2 . - .346 packets/slot.

The "sufficient variability" condition excludes deterministic arrival processes

such as that with Ni - i for i - 1,2,3,... which has X - 1 and for which the

CORAA is trivially stable. Other than for this restriction, the condition

A < .346 packet/slot is both necessary and sufficient for stability of the CORAA

with very weak conditions on the arrival process Nt that we shall not attempt to

make precise.

The same argument for the MCORAA, making use of (3.51) shows that

X< 2 - .375 packets/slot
2.67

is the corresponding sufficient condition for stability, and also a necessary

condition when the arrival process has "sufficient variability." It is worth

noting here that the upper limit of stability of .375 packets/slot for the MCORAA

exceeds the l/e - .368 packets/slot "maximum throughput" of the unstable slotted-

Aloha random-access algorithm.

In the following sections, we shall make the above stability arguments

precise for the important case where the new packet process if Poisson. Along

the way, we will determine the "delay-throughput characteristic" for the CORAA.

4.3 Dynamic Analysis of the CORAA

We now consider the case where the new packet process is a stationary

Poisson point process, i.e., where Nt+T - Nt is a Poisson random variable with

mean AT for all positive T and all t > 0. Let Y and X denote the length and

number of packets in the first slot, respectively, of the i-th CRI when the

COMA In applied, where Y0 and X0 correspond to the CRI beginning at t - 0. By

assumption there are no packets awaiting transmission at t - 0 so that
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X0 = 0 (4.2a)

Yo = 1. (4.2b)

By the Poisson assumption, given that Y- L, Xt+1 is a Poisson random variable

with mean XL, i.e.,
N

P(X =N IY-=L) -I ( eL) (4.3)
i+l N!

for N - 0,1,2,....

Because of (4.3) (which reflects the independent increments property of the

Poisson new packet process), Yi+l is independent of Y0,YI,...Yi_1 when Y is given.

Thus YOP Y1 9 Y2 ... is a Markov chain, as is also the sequence X0, X1, X2,...

We now consider the "dynamic behavior" of these chains in the sense of the de-

pendence of E(Xi) and E(Yi) on i. We first note that the Poisson assumption im-

plies

E(Xi+ l IYi =L) - XL, (4.4)

which upcn multiplication by P(Yi=L) and summing over L yields

E(Xi+l) - XE(Yi). (4.5)

Equation (4.5) shows that finding the dependence of either E(Xi) or E(Yi) on i

determines the dependence of the other, so we will focus our attention on E(X i).

To illustrate our approach, we begin with the rather crude upper bound

< 3N - 1 + 2 60N - 6 1N' all N > 0 (4.6)

for the CCRA, which follows from (3.18) with M - 2. But E(YiIXiuN) - L so that

(4.6) implies

E(Yi Xi=N) < 3N - 1 + 2 6ON - 61N (4.7)

Multiplying by P(Xi=N) and summing over N gives

E(Yi) < 3 E(Xi) - 1 + 2P(Xi=O) - P(Xil). (4.8)
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Now using (4.5) in (4.8), overbounding P(Xi=O) by 1 and underbounding P(Xiul)

by 0, we obtain the recursive inequality

E(X+), - 3 X E(Xi) < A (4.9)

When equality is taken in (4.9), we have a first-order linear recursion whose

solution for the initial condition (4.2a) is an upper bound on E(Xi), namely

E(X ) < )L [l-(3X) ], all i > 0. (4.10)
1

showing that E(Xi) approaches a finite limit as i provided X < 1. It is
3.

more interesting, however, to consider a "shift in the time origin" to allow

X0 - N (4.11)

to be an arbitrary initial condition. The solution of (4.9) then yields the

bound

E(Xi) < N(3X) + X [1-(3X)1, all i > 0. (4.12)

<1
Inequality (4.12) shows that when A <-1 and X0 is very large (as when we

take the time origin to be at a point where momentarily a large number of packets

are awaiting their first transmission), E(Xi) approaches its asympotic value of

less than X/(I-3X) exponentially fast in the CRI index i, and thus at least

this fast in time t as the successive CRI's are decreasing in length on the

average.

A similar argument beginning from the correspondingly crude lower bound

for M - 2 in (3.18), namely

> 2N - 1 +'260N (4.13)

would give, for the initial condition (4.11), the bound

E(Xi) > N(2X) - X [1-(2X)'], all i > 0, (4.14)
a1 1

showing that E(X as i when X >-, and also showing for X < - that the

approach of E(X ) to its asymptotic value is not faster than exponential in the

CRI index i.
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It should be clear that had bounds 04.6) and (4.13) been replaced by the

correspondingly sharp bounds from (3.21), we would have found that

E(X,,) I Uir E(X ) (4.15)

is.jinite for

S<2.886 .3465 (CORAA) (4.16)

but is infinite for

x > 1 .3471. (CORAA) (4.17)

Moreover, (4.5) implies that

E(Y)  lir E(Yi) E(X) (4.18)
i-W

so that (4.16) and (4.17) are also conditions for the finiteness and non-

finiteness, respectively, of E(Y.).

Similar arguments based on (3,51) would have shown for the MCORRA that

< 2.6651 - .3752 (MCORAA) (4.19)

> 2.6607 .3758 (MCORAA) (4.20)

imply the finiteness and non-finiteness, respectively, of E(Yo).

We will shortly see that conditions (4.16) and (4.17) in fact imply the

stability and instability, respectively, of the CORAA corroborating the intui-

tive analysis of Section 4.2. Conditions (4.19) and (4.20) similarly imply the

stability and instability, respectively, of the MCORAA.

4.4 Stability Analysis of the CORAA

We have just seen that the Markov chain XOX 1 ,X2 ,... [giving the number

of packets in the first slots of the CRI's when the new packet traffic is Poisson

and the CORAA is used] has E(Y.O) < - when X < .3465. We also not@ from (4.3)

that, regardless of the value of Xi, X i+l has nonzero probability of being any

nonnegative integer. These two facts imply that for X < .3465 the chain has
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steady-state probabilities

and r P(XN) -  lir P(Xi-N) N - 0,1,2,... (4.21)

and is erodic in the sense that if nN is the number of CRI's with N packets

among the first n CRI's, then

N
lir n 7N (a.s.). (4.22)
n-wo

Similarly, X < .3465 implies that the Markov chain yYY2 has steady-

state probabilities

P(YjL) =  lir P(Yi=L) L 1,3,5,... (4.23)

such that

lim n . P(Y-L) (4.24)nIc n
where nL is the number of CRI's of length L among the first n CRI's.

Let the random variable Y denote the length of the CRI in progress when aa

"randomly-chosen packet" arrives at its transmitter. Because the new packet

arrival process is stationary, P(Y a=L) will equal the fraction of the time axis

occupied by CRI's of length L, i.e.,

Ln -
P(Y aL) = a L (a.s.). (4.25)

n- in-

i=l

Dividing by n in the numerator and denominator on the right of (4.25) and making

use of (4.24) gives

LP (Y=L)
P(Y =L) - - (4.26)

a E (Y0,)

Multiplying in (4.26) by L and suimming over L gives
E (y2

E(Y ) EY (4.27)
a' E CO,)
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where

E(Y) lim E (Y2) (a. s.) (4.28)
jW i

as follows again from ergodicity.

Now let the random variablg Yd denote the length of the CR1 in which the

samne randomly chosen packet departs from the system in the sense of being suc-

cessfully transmitted, and let X. be the total number of packets in this CR1.

* From (4.4) and the fact that in the CORAA a packet departs in the CR1 immediately

following that in which it arrives, we have

E(XdIY -L) =L.(4.29)

Multiplying by PCYa=L) and summing gives

E(Xd) = XE (Y). (4.30)

Next, we note that

E(Y dIXd-N) = LN < 2.8867N + 60ON -1.8867 1 (4.31)

is a simple but rather tight upper bound which follows from (3.21) and a check

of the cases N - 2 and N =3. Multiplying by P(X d=N) in (,4.31) and summing

over N gives

E(Yd) < 2.8867E(X d) + P(Xd=O) - 1.886 7P (Xd-l). (4.32)

But P(dl aL- Xe- XL XLP(Xd- oya -L) > XXdIa-L for all L which

implies

P(Xd-l) > XP(Xd=O). (4.33)

Using (4.33) in (4.32) gives

ECY d) <2.8867E(Xd) + (1-1.8867X) P(XdinO). (4.34)

But P(X dOIY L) - e- XL e- for all L so that

P(Xd-O) < e (.5

Substituting (4.30) and (4.35) in (4.34) now gives

E(Yd < 2.8867XE(Y ) + (1-l.8867X)e 4  (4.36)

35



provided X < .53, which includes all X in the range of interest as will soon be

seen. Inequality (4.36) is our desired tight upper bound on E(Yd) in terms of

E(Ya).

Similarly, starting from

LN > 2 .881N - 1 + 2 6ON - 0.88106 1N (4.37)

which follows from (3.21), we note that the same argument that led to (4.32)

now gives

E(Yd) > 2 .8810E(Xd) - 1 + 2P(Xd=0) - 0.88 1OP(Xd-l).

Overbounding P(Xd=l) by 1 - P(Xd=O) gives

E(Yd) > 2 .88 1E(Xd) - 1.881 + 2.881P(Xd-0). (4.38)

But P(Xd0Ya-L) - eL ; hence multiplying by P(Y a=L), summing over L, and

using Jensen's inequality [8] gives

P(Xd=O) > e- E(Ya). (4.39)

Substituting (4.39) in (4.38) and making use of (4.30) yields

E(Yd) > 2,881XE(Y a ) - 1.881 + 2.881e - XE (y a )  (4.40)

which is our desired lower bound on E(Y d in terms of E(Y )

We now introduce the crucial random variable in a random-access system,

namely the delay D experienced by a randomly-chosen packet, i.e., the time

difference between its arrival at the transmitter and the onset of its success-

ful transmission (so that D = 0 when the packet is successfully transmitted be-

ginning at the same moment that it arrives at the transmitter). Now making

precise the notion of stability introduced intuitively in Section 4.2, we say

that the random-access system is stable just when E(D) < =.

For the CORAA, we first note that
1 (Y ) +1 1
EY E(Y-1 ) < E(D) <-1 E(Ya + E(Yd-1) (4.41)

as follows from the facts i) that on the average the randomly-chosen packet
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arrives at the midpoint of the CR1 in progress, and (ii) that at the latest

its successful transmission begins in the last slot of its departure CRI, but

on the average somewhat beyond the midpoint of the slot starting times as fol-

lows from the discussion in Section 2.3. Substituting (4.40) in (4.41) gives

the lower bound

1 -XE(Ya)
E(D) > .+ 1.4405X E(Ya) - 1.4405(1-e-E() (4.42)

Similarly, using (4.36) in (4.41) gives the upper bound
1 -

E(D) < - + 2.8867X E(Y ) + (1-1.8867X)e- X-1. (4.43)
2 a

From (4.42) and (4.43), it follows that the CORAA is stable if and only if

E(Y a) < 0. We are thus motivated to explore (4.27) more closely.

We first note that E(Y 2 ) > E2 (Y_) implies by virtue of (4.27) that

E(Y a) > E(Y,.), (4.44)

which in turn, because of (4.17), implies that the CORAA is unstable for

A > .3471.

We now proceed to obtain a rather tight upper bound on E(Y a ). We begin

with the bound

S N < 8.333N 2 - 2.369N + 1 - 5.96461N + 3.40662N (4.45)

which follows from (3.38) and the facts that So M SI M 1 and S2 = 33. By virtue

of the steady-state probabilities in the corresponding Markov chains, we have

N-0
Go

2: S N N' (4.46)

N-O

Thus, multiplying by wN in (4.43) and summing gives

2< 2E(Y; )_ 8.333E(X2) - 2.369E(X,) + 1 - 5.964w 1 + 3.406- (4.47)

which is a very tight bound as follows from the tightness of (4.45). But from

(4.3) and the fact that the mean and variance of a Poisson random variable
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coincide, we have

E(X +IYi-L) XL + (XL)2 .  (4.48)

Multiplying by the steady state probabilities P(Yc-L) and summing over L now

gives E(X ) - XE(Y) + X2E(Y 2

which, because of (4.18), can be written as

E(X) - E(X.) + x2 2(Y2 (4.49)

Substituting (4.49) in (4.47) and rearranging gives

(1-8.333X2 ) E(Y2) < 5.964E(X) + 1 - 5.9641 + 3.406w2.

Dividing now by E(Yo) - E(X )/X and using (4.27) yields

2 1-5.9647rr+3.4067i2(1-8.333X ) E(Ya) < 5.964X + 1 E(Y2) (4.50)

We now turn our attention to the second term on the right of (4.50).

First, we observe that
CO

1-0
o

= 1 + (LN-1) i > 1 + 4ff2  (4.51)
i-nO

because LN > 1 for all N and L2 - 5. But (4.51) thus implies

1+3.4067r 2E(- < I,(4.52)
E (Y,.)

which we shall shortly use in (4.50).

To handle the term involving 7t1 in (4.50) requires more care. We begin

somewhat indirectly by noting that multiplying by iTN - P(X,,-N) in the upper

bound (4.31) on L. - E(Y IX=N) and then summing over N gives

E(Y ) < 2.8867E(XO) + w0 - 1.8867n1" (4.53)

Overbounding Tr0 by 1 - I and using (4.18) gives
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1-2.88677r1

E(Y®) - 1-2.8867X

provided X < .3464. The rather tight bound (4.54) is of some interest in it-

self. We first use (4.54) only to note that the right side is less than 1 if

IT1 > A; but E(Y_) > 1 so that by contradiction we conclude that

7T1 < X (4.55)

for X < .3464. In Section 4.5 we will show that

it > X(1-X), X < .22 (4.56)

which indicates the tightness of (4.55) and (4.56).

Next, we note that (4.54) implies

S (1--) 
(4.57)

where for convenience we have written

a - 2.8867. (4.58)

The right side of (4.57) increases with 7ri" Thus, using (4.56) in (4.57) gives

I -) (l-a) X < .22 (4.59)E(Y ) - -k1k -

Now using (4.59) for X < .22 and the trivial bound 'It /E(Y ) > 0 for X > .22

together with (4.52) in (4.50), we obtain

5.9640 + 1 - 5.964X(1-X)(1-2.8867A)/[1-2.8867A(1-A)] A < .22 (4.60)

E(Y a) < 1 - 8.333X
2  X --

1 -- 13 X .22 < X < .3464

which is our desired rather tight upper bound on E(Y a). Because 8.333A 2

(2.8867A) 2 , (4.60) verifies that the CORAA is stable- for X < .3464, as was

anticipated in (4.16).

An entirely similar argument beginning from

SN > 8.300N - 2.403N + 1 - 5.89761N + 3 . 6 0 6 6 2N (4.61)
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I1
[which follows from (3.38)], rather than from (4.45), leads to

OX2 1 - 5.8977r1 + 3.606v2

(1-8.300X )E(Y a) > 5.897X + - E(Y.) (4.62)

rather than to (4.50). The tightness of the bounds (4.50) and (4.62) is evi-

dent. Underbounding r 2 by 0 and using (4.55) in (4.62) gives

(1-8.300X )E(Y ) > 5.897X + 1 - 5.897(4.63)
30; ) (a)- E (Y,,) "(.3

When X > .1696 so that 1 - 5.897X < 0, we can use the trivial bound E(Y..) > 1

to see that the right side of (4.63) is underbounded by 1. When X < 1.696 we

can use (4.54) and (4.56) to show that the right side of (4.63) is underbounded

by
5.897X + (1-5.8971)(1-2.88671)/[1-2.8867(1-)].

Combining these two bounds, we have

( 5.897X + (1-5.8971)(1-2.88671)/[1-2.8867X(1-)I, X < .1696

E(Y a ) > 1 - 8.30012 (4.64)
a .1696 < A < .3464

1 - 8.30012 .

Inequality (4.64) is our desired lower bound on E(Y ).

Table 4.1 gives a short tabulation of the upper and lower bounds (4.60)

and (4.64), respectively, on E(Y ). The relative tightness of these bounds
a

is perhaps more visible in Figure 4.1. A close review of the bounding argu-

ments suggests that the upper bound (4.60) is a better approximation to E(Y a )

than is the lower bound (4.64).

Using (4.60) in (4.43), we obtain the upper bound on the expected delay,

E(D), of a randomly-chosen packet as tabulated in Table 4.1. We could use

(4.64) together with (4.42) to get a lower bound on E(D). However, we recall

that the tightness of the upper bound (4.60) suggests instead using it together

with (4.42) to obtain the "approximate lower bound" tabulated in Table 4.1.
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E(Y a ) upper E(Y ) lover E(D) upper E(D) approx.
A bound (4.60) bound (4.64) bound lower bound

0 1 1 1/2 1/2

.05 1.039 1.015 .531 .521

.10 1.179 1.073 .664 .599

.15 1.492 1.216 1.009 .780

.1696 1.696 1.315 1.252 .902

.20 2.165 1.497 1.842 1.200

.25 3.783 2.078 4.03 2.37

.30 11.16 3.952 14.6 9.01

1/3 40.32 12.86 58.2 38.1

.34 82.49 24.68 121.5 80.2

.345 374.5 82.7 559.5 371.9

Table 4.1: Upper and lower bound on the expected length, E(Ya), of the
CRI in which a randomly-chosen packet arrives versus the
throughput A, and on the expected delay for a randomly-chosen
packet, for the CORAA.

Our purpose is to illustrate that the bounds (4.42) and (4.43) do not signifi-

1
cantly differ since their comon term - E(Y2 ) is the dominant one. In Figure

4.1, we have plotted this approximate lower bound on E(D) together with the

strict upper bound. As A is the throughput of the system, the plot of E(D)

versus A is the delay-throughput characteristic of the MCORAA. Figure 4.1

gives a strict upper bound on this characteristic together with an approximate

lower bound which indicates that this upper bound is quite tight.

4.5 Steady-State Probabilities for the CORAA

We have already in (4.21) introduced the steady-state probabilities

rN - P(X;=N) , N - 0,1,2,...

for the CORAA. The equilibrium equations satisfied by these steady-state
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probabilities are
Co

71N n-0 PNnn , N - 0,1,2,... (4.65)

where PNn is the transition probability

P PNn " P (X I+i'N [Xi-n)

ao

E Z P(X i+iNIYi"L) P(YiULIXiun)
L-1

M X N e r(Yi-LjX,-n) (4.66)

whert we have made use of (4.3). In general, these transition probabilities are

difficult to calculate. However, because of (3.39), (4.66) for n - 0 and I be-

comes N

PN N N , N = 0,1,2,... (4.67)

In Section 3.5, we calculated P(Yi-LIXim2). We now use this distribution, given

by (3.42), in (4.66) to obtain by summing the resultant series

P 02 " e(2)"
--1

e-3X /(2-e -2 ) - A(X), (4.68)

P12 .ml X(2m+l)e-X(2m+l)2-m

- A(A )(6-e-2X)/(2-e-
2 )

k B() (4.69)

and

01 2 -X(2m+l)
P22 " i X (2m+l) e 2

m-1

~1 2 -2X 2
2. X A(X)[l+32/(2-e )]

- C(). (4.70)

As we shall soon see, these few explicit transition probabilities are quite
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enough to establish the bound (4.56), which is the main objective of this sec-

toMaking use of (4.67)-(4.70), we can write (4.65) for N - 1, 2, and 3 as

710 -e_ (7r+1r) + A() 2 + *.(4.71a)

W )Xe4X(w6r0 +) + + ..W2*+(4.716b)

T 1 X2 -_X(47c
f2  2 Xe (7r0+7r) + C(X)ir2 +..(47c

vhere the terms not shown explicitly are of course nonnegative. To proceed fur-

ther, we need to make use of certain bounds on E(Y.). First, we note that

E (Y,) L N L7r N
W- 0

> r+ IT1 + 5ir + 23 IlTri

where we have made use of Table 3.1 and the fact that LN increases with N.

Thus, we have

3E('i.) > 23 - 2O0 7wl) - 872 (4.72)

Discarding the nonnegative higher order terms on the right in (4.71) gives

'IT0  e A (n60+7I1) + A(X)rr 2  (4.73a)

7I1. Xe 4X (7e~ + B (X) 72  (4.73b)

7F 2 >1 X2 4_ 47c
2~X ('r0 Irl) + CC(X) 7r2. 47

St-ning (4.73a) and (4.73b), then rearranging, gives

71 2 < F(X) (To+T 1) (4.74)

where

Using (4.74) in (4.72) gives

3E(YJ, 23 -[20+8F(X)](r 0 +1T 1). (4.76)
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But (4.73c) is equivalent to

where

G(X) 2 Ae-'/[l-C(A)1 (4.78)

using (4.77) in (4.73b) gives

T,> ( Xex +B ())G(MXI(7T6+nl). (4.79)

Now using (4.79) in (4.76) gives

3E(Y.) > 23 - w 1 [20+8F(X)]/[Xe-X+B(X)G(X)]. (4.80)

Inserting the upper bound of (4.54) on E(Y.) into (4.80) and rearranging, we

obtain

T> (20-23aX)/H(X), if H(X) > 0 (4.81)

where

H(X) A (1-aX) [20+8F(X)] - 3a (4.82)
Xe- + B(X)G(X)

and

a - 2.8867.

Inequality (4.81) is our desired lower bound on 7t1and is tabulated in Table

4.2. We see that

7T > Ak(l-A) for X < .2209 (4.83)

which is our desired justification of (4.56).

Proceeding in a similar way, we can derive lower bounds on 70and 2

Using (4.79) in the bound (4.54), we obtain

3E(Y,) < 3{1-a[XeA+Bx)X](T+r}/la. (4.84)

Combining (4.76) and (4.84), we obtain after some rearrangement

0' + 7T1 >3(X (4.85)

where

AM 20 -23aL 4.6

-(1-aX) 120+8F(X)] - 3a[X AA+B(X)G(X)] 4.6
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provided the denominator of (4.86) is positive. Inserting (4.85) and (4.77)

on the right in (4.73a) now gives

w0 . (ex +A(X)G(X)]J(X) ,(4.87)

which is our desired lower bound on r 0. Similarly, using

Lower Bounds Upper Bounds
(4.87) (4.81) (4.88) (4.106) (4.95) (4.104)

X(-A I 0  iT I _____2__ 0 Tr 1 _____2

0 0 1 0 0 1 0 0
.05 .0475 .9506 .04770 .00122 .9510 .04775 .00125

.10 .0900 .9011 .0911 .00485 .9034 .0916 .00516

.15 .1275 .8488 .1299 .0108 .8564 .1319 .0122I.20 .1600 .7872 .1620 .0185 .8094 .1686 .0230

.2209 .1721 .7545 .1721 .0219 .7896 .1828 .0288

.25 .1875 .6909 .1791 .0262 .7620 .2015 .0382

.28 .2016 .5462 .1592 .0263 .7332 .2193 .0497

.30 .2100 .0870 .0272 .0048 .7139 .2303 .0584

.3464 - - - - .6689 .2533 .0820

Table 4.2: Upper and Lower B3ounds on the Steady-State Probabilities

71N =P(X:;N) for the CORAA versus the throughput X.

(4.86) in (4.77) gives the bound

IT 2 G(X)J(X) . (4.88)

A short tabulation of the bounds (4.87) and (4.88) is included in Table 4.2.

Next, we turn our attention to overbounding the steady-state probabili-

ties. Beginning with IT1 we first note that because

xe~ < e1  all x, (4.89)

it follows from (4.3) that

P(X i+ 1 ulIYi.L) < e ,all L, (4.90)

and hence from (4.66) that

P1l < e1  all n. - (4.91)

Using (4.91) to overbound the terms for n > 3 on the right in (4.65) gives
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7 < Xe-A(+I ) + B(X)72 + el (1-T -T 7r2). (4.92)

A simple check shows that B(X) < e-1 for 0 < X < 1 so that (4,77) can be used

on the right in (4.92) to give

7 nI < e-  - [e-lAXe-,+e G() - B(X)G(X)](O+7Tl). (4.93)

To proceed further, we need to overtound IT0 + IT1 in terms of I. Adding 71

to both sides of (4 .73a) and using (4.77), we obtain

ITO + TI 1> Trl1/[I-e- X-A(A)G(A)] (4.94)
-A

where we have made use of the fact that A(A) < 1 - e for 0 < A < 1. Now

using (4.94) in (4.93), we obtain our desired upper bound

TI < J(A) (4.95)I wher ew J(X) e-I/{1+[e-I-Xe-A+e-IG(X)-B(X)G(X)]/[I-e-_XA()G(X)I} 
(4.96)

provided the expression in wavy brackets is positive. The bound (4.95) is

tabulated in Table 4.2.

To obtain upper bounds on 7 0 and IT1 , we begin by first noting from (4.3)

that

P(XiaOIYiL) - e-XL  (4.97)

But, as we saw in Section 3, Xi > 3 implies Yi > 5 because the CRI must contain

at least 2 collisions. Thus, (4.94) and (4.97) imply

PON.< e -5A N > 3. (4.98)

Using (4.98) on the right in (4.65) gives

TO < e-X (fO+l) + A(X) 2 + e -5X(1-0-71-2) (4.99)

Summing (4.92) and (4.99) gives

i0 + Tl < e- 1 + e- 5X + [(X+l)e- -e-1 e- 5x](v0+l) - [e-l+e-5X-A(X)-B(X) ]T2 .

(4.100)

A simple check shows that A() + B(X) < e + e - 5  holds for 0 < X < .1779
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I
and .3179 < X < 1; thus, we can in this range use (4.77) on the right in (4.100)

to obtain

+ i < KI(A) for 0 < X < .1779 and .3179 < A < 1, (4.101)

I0
where

"() = (el +e -5x)/[l+e -+e-x -(X+l)e - x + (e- +e-5x )G(X)-A(X)G(X)-B(X)G(X)].

(4.102)

Similarly, for .1779 < X < .3179 we can use (4.74) on the right in (4.100) to

obtain

T0 + i < K 2(X) for .1779 < X < .3179 (4.103)

where K2 (X) is equal to the right side of (4.102) with G(X) replaced by F(X).

It now follows from (4.74) that

IF(A)K1 (A) for 0 < X < .1779 and .3179 < X < 1

i 2 
<  (4.104)

F(X)K2(2) for .1779 < A < .3179.

This bound is also tabulated in Table 4.2. Finally, we note that using (4.74)

in (4.99) gives

7 0  e -5 X + (e- X e - X )(0+ei) + [A(A)-e- X](r 0+I) (4.105)

-5 A
where we have used the fact that A(X) > e for 0 < A < 1. Using (4.105)

with (4.101) and (4.103) then gives

T0 < e - 5 X + [e -X-e -5+F(A)A(X)-F(X)e-X ]K K() (4.106)

where

i for 0 < X < .1779 and .3179 < X < 1
i =(4.107)

2 for .1779 < A < 1.

The bound (4.106) is also tabulated ir Thble 4,2.

From Table 4.2, we see that our upper and lower bounds on r0, 7i1 and r2

are so tight for A < .15 as to be virtually equalities, and still, reasonably

tight for .15 < X < .25. The lower bounds begin to degrade rapidly, however,

for X > .28. The chief reason for this is that the upper bound (4.54) on
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E(Y.) that was used to obtain the lower bounds on T0 ,I and 72 becomes very

loose in the region X > .28. To improve our lower bounds, we should make use

of (4.50) to obtain an upper bound on E(Y) that will involve both "1 and 2,

then use this bound in place of (4.54) in the argument that led to the lower

bo'nds on Tr0,rlr, and it 2 . To obtain even tighter lower bounds, we could begin

from an upper bound on E(Y,) in terms of ni, 7T2 and ir3* Etc.

The upper bounds on i 0 , I1 and t 2 above, however, did not utilize any

bounds on E(Y.) in their derivations. These upper bounds should be virtual

equalities for 0 < X < .30 as the inequalities introduced to obtain them are

all extremely tight for this range of X. To tighten these bounds further, we

would need to include additional explicit transition probabilities in (4.73).

It should be clear from this section that any finite number of the steady-

state probabilities 70, T1 , t2 ,.. can be computed to any desired precision by

the techniques of this section, if only one has sufficient patience and a good

calculator.

4.6 Non-Obvious Random-Access Algorithms with Increased Maximum Stable
Throughputs

We saw in Section 4.4 that the maximum value of the thoughput X for

which the CORAA is stable is (to three decimal places) .347 packets/slot. For

the MCORAA, this "maximum stable throughput" is (again to three decimal places)

.375 packets/slot. There are many "non-obvious" ways to devise random-access

schemes based on the CCRA (or the MCCAA) to increase the maximum stable

throughput. Perhaps the most natural way is to "decouple" transmission times

from arrival times, as was first suggested by Gallager [9].

Suppose as before that the random-access scheme is activated at time t - 0

and that the unit of time is the slot so that the i-th transmission slot is the

time interval (i,i+l]. But now suppose that a second time increment A has been
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chosen to define arrival epochs in the manner that the i-th arrival epoch is

the time interval (iAiA+A]. [Note that A has units of slots so that A - 1.5,

for instance, would mean that arrival epochs have length 1.5T seconds, where T

is the length of transmission slots in seconds.] Then a very natural way to

obtain a random-access algorithm from a collision-resolution algorithm is to

use as the first-time transmission rule: transmit a new packet that arrived

during the i-th arrival epoch in the first utilizable slot following the col-

lision-resolution interval (CR1) for new packets that arrived during the

(i-l)-st arrival epoch. The modifier "utilizable" reflects the fact that the

CRI for new packets that arrived during the (i-l)-st arrival epoch may end

before the i-th arrival epoch. If so, the CRI for the new packets that arrive

during the i-th arrival epoch is begun in the first slot that begins after

this arrival epoch ends. The "skipped" transmission slots are wasted, and

indeed one could improve the random-access algorithm slightly by "shortening"

the i-th arrival epoch in this situation - but this complicates both the anal-

ysis and the implementation and has no effect on the maximum stable throughput.

The analytical advantage of the above first-time transmission rule is

that it completely eliminates statistical dependencies between the resulting

CRI's. If Xi denotes the number of new packets that arrive in the i-th ar-

rival epoch and Yi denotes the length of the CRI for these packets, then X0,

X1, X2,... is a sequence of i.i.d. (independent and identically distributed)

random variables, and thus so also is Y0 ' YIp Y2 ' .. .. . Letting X and Y denote

an arbitrary pair Xi and Yi' we note first that, because the new arrival

process is Poisson with a mean of X packets/slot,

N
P(X-N) - ( e . (4.108)

N! e

Moreover, we have
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E(Y) = P(X=N) (4.109)
N=0

and

E(Y2) 2 0 SN P(X-N). - (4.110)
N0

Idfact, our random-access system is now just a discrete-time queueing system

with independent total service times for the arrivals in each arrival epoch.

The random-access system is surely unstable if

E(Y) > A (4.111)

since then the "server" must fall behind the arrivals. Conversely, if

E(Y) < A (4.112)

and E(Y 2 ) is finite, then the law of large numbers suffices to guarantee that

the average waiting time in the queue will be finite and hence that the random-

access system will be stable.

Now consider the use of the CCRA with the above first time transmission

rule. From (3.21) and Table (3.1), we have

- + (2-a) + (6-2a)6 + (6 - 3a 6 (4.113)

<aN 1+ 2 ON + IN a 2N 3 )63N

where

a = 2.8867. (4.114)

Substituting (4.113) and (4.108) into (4.109), we find

E(Y) < f_ (Z) A aZ - 1 + e-Z L2+(2-a)Z+(3-a) Z2+Q 1- _.)Z3j (4.115)- a (9

where we have defined

Z - XA. (4.116)

Using (4.115) in (4.112) [and noting that E(Y 2 ) is finite as follows from

(4.110) and (3.35)], we see that our random-access algorithm will be stable for

< sup Z .4294 (4.117)
Z>0 fa ( Z )

where the maximizing value of Z is found numerically to be

Z A AA - 1.147. (4.118)

51



This suggests that the maximum throughput is obtained when the length of the

arrival epochs is chosen so that the average number of arrivals is 1.147 -

however the maximum in (4.117) is very broad, choosing AA - 1 gives n system

which is stable for A < .4277. Moreover, from (3.21) we see that the inequality

(4.113) is reversed if in place of (4.114) we take

a - 2.8810. (4.119)

The condition (4.111) for instability of the random-access sytstem is then

just

> oSUpf = .4295 (4.120)
Z>0 a(Z

where the maximum is now attained by Z - XtA - 1.148. Thus, the maximum stable

throughput of this random-access scheme based on the CCRA is (to three decimal

places) .429 packets/slot, compared to only .347 packets/slot for the CORAA.

If the above first-time transmission rule is used together with the MCCRA,

then an entirely similar argument starting from (3.51) shows that this random-

access system is stable for

X < .4622

(where the maximizing value is Z - XA - 1.251) but is unstable for

X > .4623.

Thus, the maximum stable throughput is (to three decimal places) .462 packets/

slot, compared to only .375 packets/slot for the MCORAA.

A little reflection shows that the increased throughput obtained by using

the above first-time transmission rule rather than the "obvious" first-time

transmission rule, is that the former avoids the very large initial collisions

that occur in the latter when the previous CRI has been so long that many new

packets are awaiting first-time transmission.

4.7 Other Variations and the Capacity of the Poisson Random-Access Channel

If one defines the Poisson Random-Access Channel by conditions (i),
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(ii) and (iii) of Section 2.1 together with the specification that for t > 0

the new packet process is a stationary Poisson point process with a mean of X

packets/slot, then a quite reasonable definition of its capacity is as the

supremum, over all realizable random-access algorithms, of the maximum stable

tIdoughput obtainable with these algoritlhns. The maximum stable throughput it-

self is the suprenum of those X for which the average delay experienced by a

randomly-chosen packet is finite when the given random-access algorithm is

used. It follows from the results of the previous section that the capacity

of the Poisson Random-Access Channel is at least .462 packets/slot.

Note that if a random-access algorithm is stable, i.e,, if the average

delay for a randomly-chosen packet is finite, then the probability must be

unity that a randomly-chosen packet is eventually transmitted successfully.

Thus "lossy" random-access algorithms in which there is a nonzero probability

that retransmission of a packet is abandoned before it is successfully trans-

mitted are always unstable.

We have specified the branching action within the CCRA and MCCRA to be

determined by the results of independent coin flips by the various transmitters

concerned. It should be clear that we could equivalently have specified this

branching to be determined by the arrival times of the individual packets at

their transmitters. For example, if there has been a collision on the first

transmission of the packets in some arrival epoch when the CCRA or MCCRA is

used together with the first-time transmission rule of the previous section,

then "flipping 0" or "flipping 1" by the colliding transmitters is equivalent

to "arriving in the first half of the arrival epoch" or "arriving in the second

half of the arrival epoch." If all "coin flips" are so Implemented by halving

the time interval in question, then the resulting random-access algorithm be-

comes a first-come-first-served (FCFS) algorithm. (The CORAA and MCRAA likewise
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become FCFS when this manner of implementing coin flips is used.)

Suppose we use this time-interval-halving method to implement coin flips.

As Gallager was first to note [9, if a collision is followed immediately by

another collision, then one has obtained no information about the number of

packets in the second half of the interval corresponding to the former colli-

sion. Thus, the second half interval can be merged into the unexamined por-

tion of the arrival time axis rather than explored as determined by continua-

tion of the collision-resolution algorithm. Using this "trick" with the MCCRA

and the first-time transmission rule of the preceding section, Gallager ob-

tained a maximum throughput of .4872 packets/slot (compared to only .462 pac-

kets/slot without this "trick.") Mosely (10] refined this approach by op-

&imizing at every step the length of the arrival interval given permission to

transmit (which is equivalent to allowing bias in the coin tossed) to ob-

tain a maximum stable throughput of .48785; Mosely also gave quite persua-

sive arguments that this was optimum for "first-come-first-tried" algorithms.

On the other side of the fence, Pippenger [111 used information-theoretic

arguments to show that all realizable algorithms are unstable for X > .744,

and Humblet [12] sharpened this result to X > .704. Very recently, olle [13]

used a "magic genie" argument to show that all realizable algorithms are un-

stable for X > .6731 packets/slot.

Thus, the capacity of the Poisson Random-Access Channel lies somewhere

between .48785 packets/slot and .6731 packets/slot, and no more can be said

with certainty at this writing. Beginning with Capetanakis (3], most workers

on this problem have conjectured that the capacity is 1/2 packet/slot. In any

event, it has recently appeared much easier to reduce the upper bound on capa-

city then to increase the lower bound. And it is no longer defensible for

anyone to claim that 1/e is "capacity" in any sense.
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5. EFFECTS OF PROPAGATION DELAYS, CHANNEL ERRORS, ETC,

In Section 2.1, we stated the idealized conditions under which the previous

analysis of collision-resolution and random-access algorithms was made. We now

show how the ideal-case analysis can be easily modified to include more realis-

tic assumptions and also to take advantage of additional information sometimes

available in random-access situations.

5.1 Propagation Delays and the Parallel Tree Algorithm

Assumptions (ii) and (iii) in Section 2.1 stipulated that, immediately

at the end of each slot, each transmitter received one of 3 possible messages,

say "ACK" or "NAK" or "LAK," indicating that one packet had been successfully

transmitted in that slot or that there had been a collision in the slot or that

the slot had been empty, respectively. This assumption is appropriate, however,

only when the round trip transmission time is much smaller than one slot length.

Suppose that the round-trip propagation delay time plus the transmission time

for the feedback message (ACK or NAK or LAK) is actually Dr slots. (If the

propagation delay varies among the transmitters, then Dr is the maximum such

delay.) In this case, the result of transmissions in slot i can govern future

transmissions no earlier than in slot i + d where

d - [Drl + 1 (5.1)

and where rxl denotes the smallest integer equal to or greater than x. For in-

stance, D - 2.3 slots would imply d - 4 slots.r

The simplest way conceptually to extend our former D - 0 analysis to ther

case D > 0 is to treat the actual random-access channel as d interleaved zero-r

propagation delay channels. Slots 0, d, 2d,... of the actual channel form slots

0, 1, 2,... of the first interleaved channel. Slots 1, d + 1, 2d + 1,... of the

actual channel form slots 0, 1, 2,... of the second interleaved channel; etc.
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Whatever random-access algorithm is chosen is independently executed on each

of the d interleaved channels.

When the CORAA [or the MCORA.A] is used on the individual interleaved chan-

nels, perhaps the most natural traffic assIgnment rule for new packets is that,

if the new packet arrives at its transmitter during slot i - 1, it is assigned

to the next occurring interleaved channel, i.e., to the interleaved channel

corresponding to slots i, i + d, i + 2d,... . We now suppose that this assign-

ment rule is adopted. If the expected delay for a randomly-chosen packet for

the case D - 0 and Poisson traffic with a mean of X packets/slot is E(D), thenr

the expected delay E(Di) for a randomly-chosen packet for the interleaved scheme

and Poisson traffic with the same mean is just

E (D dE(D- )+ (5.2)

This follows from the facts that each interleaved channel still sees Poisson

traffic with a mean of A packets/slot, and that on the average a new packet

waits-! slot before becoming active in the algorithm for the interleaved chan-
2

nel and thus waits E(D - further transmission slots on the interleaved chan-

nel before the start of its successful transmission. Using (5.2), we can easily

convert the delay-throughput characteristic for the Dr - 0 case to that for the

inter leaved scheme.

Despite the naturalness of the above new packet assignment rule for the

interleaved CORAA (or the MCORAA), it is obviously inferior to the rule: assign

a newly arrived packet randomly to one of the interleaved channels having no

collision-resolution interval (CRI) in progress, if any, and otherwise to the

next occurring CRI. But it appears difficult to calculate the resulting im-

provement in performance.

When arrival epochs are distinguished from transmission slots as suggested

in Section 4.6, then a good traffic assignment rule for the interleaved channels

56



is: transmit a new packet that arrived during the i-th arrival epoch in the

next slot that occurs after new packets in the (i-l)-st arrival epoch have

been initially transmitted and is from an interleaved channel with no CRI in

progress.

In the infinitely-many-sources-generating-Poisson-traffic model, there is

never a queue at the individual transmitters. In the practical case, however,

a transmitter may receive one or more additional new packets before success-

fully transmitting a given new packet. In the interleaved case, this circum-

stance can be exploited to reduce the expected delay by assigning the addi-

tional new packets to other interleaved channels so that one transmitter can

be actively processing several packets at once. Of course, this means also

that these packets might be successfully transmitted in different order from

their initial arrivals.

The interleaved scheme for coping with propagation delay is probably the

simplest to implement as well as to analyze. It does, however, achieve this

simplicity at the price of some increased delay. An alternative to inter-

leaving suggested by Capetanakis [3,4] is to reorder the transmissions in the

CCRA so as to process all the nodes at each level in the tree before going on

to the next level. For instance, for the situation illustrated in Figures 2.1

and 2.2, the order of the slots would effectively be permuted to 1,2,5,3,4,6,

7,8,11,9,10. Note for instance that the transmitters colliding in slot "5"

are idle for the following two slots so that if d - 1 or d - 2 there would be

no wait required before they could proceed with the algoritm. Capetanakis

called this scheme the parallel tree algorithm to contrast it with the "serial

tree algorithm" (or CCRA in our terminology.)

The parallel tree algorithm appears attractive for use in random-access

systms where the propagation delays are large. Thus, it seems worthwhile to
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show here that it can be implemented just as easily as the CCRA. Just as was

done in Section 2.3 when considering the CCRA, we suppose that each transmitter

keeps two counters (which we now call C1 and C2) , the first of which indicates

by a zero reading that he should transmit and the second of which indicates the

number of additional slots that have already been allocated for further trans-

missions within the CRI in progress. The parallel tree algoritm differs from

the CCRA only in the respect that, after a collision, the colliding transmitters

go to the end of the waiting line rather than remaining at the front. Thus,

with the stipulation that all transmitters set C2 to 1 just before the CRI be-

gins, we can implement the parallel tree algorithm by the following modification

of the Implementation given for the CCRA in Section 2.3.

Parallel Tree Algorithm Implementation: When a transmitter flips 0 or 1

following a collision in which he is involved, he sets counter C1 equal to C 2-1

or C2 , respectively, then increments C2 by 1. After all other slots, he decre-

ments C1 by 1, and transmits in the next slot when C1 reaches 0. After non-

collision slots, he decrements C2 by 1; after collisions in which he was not

involved, he increments C2 by 1. When C2 reaches 0, the CRI is complete.

Notice that, after a collision, those colliding transmitters who flip 0

will transmit again exactly C2 slots later, i.e., in slot i + C2 when the col-

lision was in slot i. Thus, the following artifice suffices to ensure that

the ACK, NAK or LAK reply from the receiver about some slot will reach every

transmitter before it is called upon to act on the result of transmissions in

that slot.

Parallel Tree Algorithm Implementation When Propagation Delays are Large

and Interleaving is Not Used: Same as the ordinary implementatioji given above

except that, when a collision occurs with C2 < d, all transmitters immediately

reset C2 to d before proceeding with the other actions required by the algorithm.
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We note that, when C is reset to d, d - C2 slots will be "wasted" by the algo-
22

rithm, i.e., these slots will necessarily contain no transmissions. These slots

could of course be used to begin (or to continue with) another collision resolu-

tion interval - but this would so complicate the implementation that one would

probably be better advised to use the interleaved approach if the efficient use

of all channel slots is so important as to warrant such complexity.

5.2 Effects of Channel Errors

Assumptions (i) and (ii) of Section 2.1 stipulated that, except for

collisions in the forward channel, both the forward and feedback channels in the

random-access model were "noiseless." In other words, after each transmission

slot, all transmitters are correctly informed as to whether the slot was empty

("LAK"), or contained one packet ("ACK"), or contained a collision ("NAK"). We

now consider the more realistic situation where channel noise can affect the

transmissions on the forward channel or feedback channel, or both.

The basic model for our error analysis is the discrete memoryless channel

shown in Figure 5.1. The input to this channel is the actual status of the

given transmission slot, i.e., "blank" or containing a "single packet" or con-

taining a "collision." The output is the actual feedback message reaching the

transmitters, i.e., "LAK" or "ACK" or "NAK." In practice, each packet trans-

mitted would be encoded with a sufficiently powerful error-detecting code that

the probability would be negligible that the common receiver would incorrectly

identify either a "blank" or a "collision" as a "single packet" because of

errors in the forward channel. We also presume that the transmitters will in-

terpret any message garbled by noise on the feedback channel as a "NAK," and

that these feedback messages would also be coded to make negligible the prob-

ability that the transmitters would incorrectly identify either a feedback

"LAK" or a "NAK" as an "ACK," or would incorrectly identify either a feedback
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Fig. 5.1:Model for analysis of channel error effects.

I
"ACK" or "NAK" as an "ACK," because of errors on the feedback channel. Thus,

it is realistic to assume that the only types of errors that can occur in our

random-access system are those that result in the transmitters interpreting the

feedback message as "NAK" when in fact the slot had been "blank" or had con-

tained a "collision." These two types of errors are indicated by the two non-

direct transitions shown in the error model of Figure 5.1. We write 6 to de-

note the probability that the transmitters will incorrectly conclude that a

blank transmission slot contained a collision, and C to denote the probability

that they will incorrectly conclude that a transmission slot with a single pac-

ket contained a collision. Note that 6 (as well as ) accounts for error ef-

fects on both the forward and feedback channels. A blank slot could, because

of errors on the forward channel, reach the common receiver as a "garble,"

thus eliciting a "NAK" message on the feedback channel; or a blank slot could

be correctly identified by the common receiver but the subsequent "ACK" message,

because of noise on the feedback channel, might reach the transmitters as a

"garble" that they are forced to interpret as a "NAK"- both of these cases
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are included in the transition from "blank" to "NAK" for the error model of

Figure 5.1.

In a realistic random-access situation, one would expect 6 to be much

smaller than C, as only one bit error in a packet on the forward channel could

cause a "single packet" slot to result in a "NAX" by the common receiver (un-

less some error-correction were employed in addition to error detection).

Moreover, for the system to be useful, one requires E < < 1, for otherwise the

throughput would be low because of the need for transmitting a packet many

times before it is successfully received even if a "genie" were to assist the

transmitters to schedule their transmissions so that collisions never occurred.

Thus, typically, one would anticipate the inequality

6 < < C < < 1. (5.3)

However, we need not impose this requirement in order to analyze the effect of

errors on the Capetanakis collision-resolution algorithm (CCRA).

We begin our analysis somewhat indirectly by first extending our analysis

of the CCRA for the error-free case. Recalling the definitions of Section 3.1,

we now further define Yb to be the number of blank slots in the CRI, Y to be

the number of slots with a single packet, and Yc to be the number of slots with

collisions. Referring to the tree diagram (such as in Figure 2.2) for the CRI,

we see that Yb + Y is the number of terminal nodes whereas Y is the number of

intermediate nodes. But, as we noted in Section 2.3, a binary rooted tree al-

ways has exactly one more terminal node than intermediate nodes so that
Yb + Y Y  + 1 (5.4)

We next define

BN a E(Yb iX=N) (5.5)

and

CN - E(Yc IX-N). (5.6)
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Now we observe that

E(Y IX=N) - N (5.7)

since each of the N packets in the first slot of the CRI is successfully trans-

mitted exactly once in the CRI. But, of course

Y ¥b + Y  + Y (5.8)b s c

so that, upon taking the expectation conditioned on X N, we have

=B N + N + C (5.9)

Similarly, (5.4) yields

B + N = C + 1. (5.10)
N N

Solving (5.9) and (5.10), we obtain

BN = (LN+l-2N)/2  (5.11)

which is a fundamental relationship for the CCRA in the error-free case.

We are now ready to grapple with errors. In Figure 5.2, we show the ef-

fect in the resulting tree diagram for the CRI of a blank-to-NAK and a single-

packet-to-NAK error on the operation of the CCRA. Here, a cross inside a node

indicates that, because of channel errors, that node will be interpreted as a

collision slot by the transmitters. The question mark above the subsequent

nodes indicates that we do not yet know whether, because of further channel

0 0 0 -

1 1

(a) (b)

Fig. 5.2: Immediate effect of (a) a blank-to-NAK error and
(b) a single-packet-to-NAK error in the CCRA.
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errors, that node will also be interpreted as a collision slot rather than cor-

rectly as a blank slot or single packet slot. Thus, a blank-to-NAK error has

the immediate effect of adding two additional blank slots to the CRI, whereas

a single-packet-to-NAK error adds one blank slot and one single packet slot.

We now define the random variable tb to be the number of slots required for

the successful transmission of a given blank slot when errors are present, i.e.,

the number of slots until all spurious "collisions" have been resolved and found

to have been actually blank slots. From Figure 5.2(a), we see that

E(tb) = 1(1-6) + [l+ 2E(tb)]6, (5.12)

because tb =I when the blank slot initially results in a correct LAK reply asb
happens with probability 1 - 6, but on the average 2 E(tb) further slots will be

required if the blank slot initially results in an erroneous NAK reply as hap-

pens with probability 6. From (5,12) we find

Et 1-26 6 < 1 (5.13)
b126 1E~tb) - i= 1-26 ' 6<2(.3

where we have focused interest on E(tb) - 1 which is the expected number of

extra slots added because of channel errors to the CRI for each blank slot in

the error-free case.

Similarly, we define t to be the number of slots required for the success-s

ful transmission of a given single packet slot when errors are present. Refer-

ring to Figure 5.2(b), we see that

E(t s) = 1(1-) + [l+E(tb)+E(ts)]C. (5.14)

Substituting (5.13) into (5.14) and solving, we find

Et)-1- 2e(l-6) 1

E(ts (1-26)(-) 6 < '- , £ < 1 (5.15)

which is the expected number of extra slots added because of channel errors to

the CRI for each single-packet slot in the error-free case.

It now follows immediately from (5.13) and (5.15) that
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26 2e(1-6)
E(YIX-N,errors) - 14 + BN 26 + N (l-26)(1-) " (5.16)

Using (5.11) and (5.16) and simplifying, we find

E(YIX=N,errors) -1-6 2(E-6) N + 6S1-2 LN + (1-26)(1-E) 2 . (5.17)

The fundamental relation (5.17) now permits us to make use of the tight bounds

on IN developed in Section 3.3 to obtain tight bounds on the expected CRI length

in the presence of errors.

In particular, it follows from (3.21) and (5.17) that

F2.8867(1-6) 2(E-6) 1
E(Y jX=Nerrors)< + N - 1 (5.18)-2 (1-26)(1-l-) N-1 (.8

for all N > 4. The stability analysis of Sections 4.3 and 4.4 can now immedi-

ately be invoked to assert that the CORAA is stable in the presence of channel

errors provided that

, < [2.8867(1-6) 2(c-6) I]-1Ll-26 + (26(c)(5.19)1-26 + (1-2 6) (1-E)

where X is the throughput, i.e., the average number of new packets per slot, of

the Poisson traffic. Moreover, we know from the tightness of the upper bound

(3.21) on LN that the right side of (5.19) is very nearly equal to the maximum

stable throughput.

In Table 5.1, we show the tight lower bound on the maximum stable through-

put given by the right side of (5.19) over a wide range of c and 6. The values

of C and 6 have not been chosen to correspond to a practical situation [cf.

(5.3)], but rather to demonstrate that the CORAA is remarkably insensitive to

channel errors. Even for the practically extreme values c - 6 = .1, the maxi-

mum stable throughput is still 90% of its value in the error-free case.

In light of the insensitivity of the CORAA to channel errors, it seems

quite surprising that the MCORAA is extremely sensitive to such errors, as we

now proceed to show. We will say that a collision-resolution algorithm suffers
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Lower Bound (5.19) on
6 Maximum Stable Throughput

0 0 .3464

.01 0 .3440

.10 0 .3217

.20 0 .2953

.50 0 .2046

.80 0 .0919

0 .01 .3453

0 .10 .3336

0 .20 .3142

0 .40 .2146

0 .45 .1454

.10 .10 .3079

.20 .20 .2598

.30 .30 .1980

.40 .40 .1155

.10 .01 .3205

.10 .02 .3193

.20 .01 .2940

.20 .02 .2928

Table 5.1: The Lower Bound (5.19) on the Maximum Stable
Throughput of the CORAA for Various Values of
E (the single-packet-to-NAK error probability)
and 6 (the blank-to-NAK error probability).

from deadlock due to channel errors, if, because of a finite number of errors,

the resulting CRI never terminates although its first slot contains only a

finite number of packets. Clearly, a collosion-resolution algorithm with such
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deadlock would be a disastrous choice for inclusion within a random-access al-

gorithm.

In Figure 5.3, we give an example to show that the modified Capetanakis

collision-resolution algorithm (MCCRA) suffers from deadlock due to channel

errors. In this example, the first slot of the CRI is actually blank but,

2

I0

Fig. 5.3: Example of deadlock due to channel errors in the MCCRA.

because of a blank-to-NAK error, is construed by the transmitters to have con-

tamned a collision. They all wait for those colliding transmitters who flip 0

to send in slot 2, which of course must then be blank. But the NCCRA now di-

rects the colliding transmitters to skip what erroneously appears to be a cer-

tain collision among the colliding transmitters who flipped one. These latter

are directed to flip again with those who now flip 0 then transmitting in slot

3, which of course must again be blank, etc. A single blank-to-NAK error thus

results in an infinitely long CR1 even though there are actuallyno packets to

be transmitted!'

Naturally one could "doctor"* the MCCRA to avoid the above illustrated
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deadlock, say by specifying that no more than 2 successive blank-skip slots will

be permitted. But this further complicates its implementation and also reduces

its maximum stable throughput under error-free conditions. When one reflects

that the maximum stable throughputs of the CORAA and the MCORAA are .347 and

.375, respectively [and that, for the non-obvious first time transmission rule

of Section 4.6, are .430 and .462 for the CCRA and MCCRA, respectively] in the

error-free case, one can hardly escape the conclusion that the slightly in-

creased throughput of the MCCRA comes at too great a price in increased sensi-

tivity to channel errors compared to the CCRA.

Returning to consideration of the CCRA, we now address some possible objec-

tions to our error analysis. One might argue that we should have allowed col-

lision-to-ACK or collision-to-NAK errors in our analysis, even though they may

have very small probabilities. But a collision-to-ACK error will cause all the

colliding transmitters to believe that their packets were successfully trans-

mitted and thus will actually shorten the CRI. Naturally these packets are

forever lost, unless some accounting is performed at the destination and a

repeat-request sent back - but this is the usual and unavoidable way that any

communication system must occasionally fail, and is not related to random-access

issues. On the other hand, a collision-to-LAK error will be immediately recog-

nized by all the colliding transmitters who then presumably would save their

packets for transmission in the next CRI. The only two conceivable types of

errors that remain unconsidered are blank-to-ACK errors, which cause no dis-

ruption at all in the CCRA, and single-packet-to-LAK errors, which again will

each be recognized by the transmitter in question so that the packet can be

transmitted in the next CRI. The heartening conclusion is that the CCRA is

extermely insensitive to channel errors of every possible sort.

Finally, one could object that we have not allowed the possibility that a
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feedback message from the common receiver could be correctly received by some

transmitters but incorrectly understood as a NAK by the rest. It is tedious,

but not difficult, to enumerate all types of such errors and to find again that

none does significant damage to the operation of the CCRA. The robustness of

the CCRA in the face of every sort of error really stems from the fact that a

priori it assumes always that there may be a collision in the next slot. If

an unauthorized packet appears in this slot because of channel errors on past

transmissions, it merely becomes a part of the collision to be resolved from

that point onwards. This packet's shady past does not preclude a bright future.

The CCRA even rides through periods where some transmitters lose track of the

correct endpoints of the CRI's because eventually from this point onwards there

will be more non-collision slots than collision slots so that all transmitters

will again agree on the endpoint of a CRI. The MCCRA, however, is prone to dis-

aster from channel errors because it rashly reaches the conclusion that a col-

lision is certain to occur in some slot from imperfect information garnered from

previous slots.

5.3 Carrier-Sensing

In some random-access situations, particularly in packet-radio networks,

it is possible for the transmitters to "hear" that a transmission slot is empty

or, when sending a packet, to "hear" that interfering signals are present. In

either case, the transmitters can then abruptly terminate the otherwise un-

productive slot. Such techniques are generally known as "carrier-sensing" [14],

and we now analyze their effectiveness in conjunction with the Capetanakis col-

lision-resolution algorithm (CCRA).

Let 8b be the fraction of a slot required for all transmitters to detect

that a transmission slot is empty (i.e., "blank"), and let 8c similarly be the

fraction of a slot required to detect that a transmission slot contains a
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collision. Then, if carrier-sensing (c-s) is exploited to terminate blank and

collision slots as soon as they are detected by all transmitters, the effect

is merely to reduce the length of each blank or collision slot by a factor of

1 - eb or 1 - 8c, respectively. Thus, it follows immediately that the expected

leifth of a collision-resolution interval (CRI) for the CCRA is given by

E(YIX.N,c-s) - LN - (1-eb)BN - (1-ec)CN (5.20)

where B N and CN are as defined in the previous section.

Solving (5.9) and (5.10), we find

CN - (LN-1)/2. (5.21)

Now using (5.11) and (5.21) in (5.20), we obtain

E(YIX=N,c-s) - LN(eb+ec)/2 + N(l-eb) + (eb-ec)/ 2, (5.22)

which is a fundamental relation. Just as for the error analysis of the preced-

ng section, we can now exploit in (5.22) the tight bounds on LN developed in

Section 3.3.

Using (3.21) in (5.22), we find

E(YIX=N,c-s) < [1. 44 34 (eb+c) + l-Ob]N - Oc (5.23)

for all N > 4. The stability analysis of Sections 4.3 and 4.4 can now immedi-

ately be invoked to assert that the CORAA is stable provided that

X < [1. 4 43 4 (eb+0 c) + 1 - e b-l (5.24)

where X is the throughput, i.e., the average number of new packets per (un-

shortened) slot, of the Poisson traffic. Again we know from the tightness of

the upper bound (3.21) on LN that the right side of (5.24) is virtually equal

to the maximum stable throughput.

In Table 5.2, we show the tight lower bound on the maximum sjable through-

put of the CORAA given by the right side of (5.24) over a wide range of eb and

Jb

69

A



oc. Not surprisingly, the maximum stable throughput is unity for 6b  a c - 0,

since then blank slots and collision slots are reduced to zero length so that

every actual transmission slot can be used for successful transmissions. More

significantly, Table 5.2 shows that early detection of collisions is far more

Important than early detection of blank slots. For instance, the maximum stable

Lower Bound (5.24) on
0b 0 Maximum Stable Throughput

0 0 1

.1 .1 .841

.2 .2 .726

.5 .5 .515

.7 .7 .431

1 1 .346

1 .9 .365

1 .7 .408

1 .5 .462

1 .2 .577

1 0 .693

.5 1 .375

.2 1 .395

0 1 .409

Table 5.2: The Lower Bound (5.24) on the Maximum Stable
Throughput of the CORAA for Various Values of
eb (fraction of slot required to detect notransmission) and Oc (fraction of slot re-

quired to detect a collision).

throughput for instant detection of blank slots (e b=0) is only .409 when e - 1,

cccompared to .346 when 8 b ft ec a 1; but this same increased stable throughput can
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be attained by the rather late detection of collisions, 0c  .7, when e - 1.

5.4 Etc.

Virtually any of the "tricks," such as making short "reservations" on

the channel for the later transmission of long "messages" [15], that have been

suggested for increasing the throughput of Aloha-like random-access systems can

also be incorporated into random-access systems based on the Capetanakis colli-

sion-resolution algorithm (CCRA). Our aim in the previous section has been to

illustrate for one such "trick," viz., carrier-sensing, how our previous analy-

sis of the CCRA and the CORAA can readily be extended to calculate the resulting

enhancement of the random-access system without any appeal to "statistical

equilibrium." The reader should have no difficulty in making the appropriate

extensions for the other tricks in the bag of the random-access system designer.
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6. SUNMARY AND HISTORICAL CREDITS

In the previous text, we have given a rather thorough analysis of the

Capetanakis collision-resolution algorithm (CCRA) and its use within random-

access systems. We have stressed the algorithmic properties of the CCRA itself

so that our main results are independent of traffic statistics. When calculat-

ing the performance of random-access systems based on the CCRA, however, we have

generally used the usual Poisson traffic model. As we have repeatedly empha-

sized, all of our calculations have been mathematically rigorous; in particular,

they have been devoid of evasive appeals to the assumption of "statistical

equilibrium" that has been all too pervasive in the random-access literature.

Finally, we have extended our analysis to include the effects of channel errors

and propagation delays, and to calculate the benefits from "carrier-sensing."

In many places in the text, we have pointed out the original source of the

result being discussed, but we now attempt to fill in as many omissions of such

credit as possible.

The pioneering work of Capetanakis [3-5] has of course been the main source

and inspiration of this paper. It is doubtful that any scheme so elegantly

simple as the CCRA algorithm has no prior roots in the literature. Some such

roots of the CCRA can be seen in the polling algorithm proposed by Hayes [16],

but the fundamental concept of a collision-resolution algorithm seems to have

found no expression prior to the work of Capetanakis.

The author suggested to Capetanakis the modification to eliminate certain

collisions that we have called the MCCRA - not knowing at the time that it

leads to deadlock with channel errors. Quite interestingly, this MCCRA was

independently but somewhat later discovered by Tsybakov and Hiha-Llov [7], who

bypassed the more robust algorithm. These latter authors, however, were the

first to use a recursive analysis in their study of the MCCRA and MCORAA. The
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extremely tight and systematic bounds of Section 3 are due to the author's stu-

dent, M. Amati, and will form part of his doctoral dissertation. The analysis

of Sections 4.1 through 4.5 is largely the joint work of Amati and the author,

but the maximum stable throughputs calculated there had already been found by

Capetanakis [3,4] using Chernoff bounds.

Capetanakis [3,4] originally gave a modification of his algorithms, based

on dynamically varying the degree of the root node in the tree, that yields the

same maximum stable throughputs of .429 and .462 as calculated in Section 4.6;

our approach there, which was based on Gallager's trick of divorcing the arrival

time axis from the transmission time axis, is virtually equivalent to, but con-

ceptually simpler than, Capetanakis' "dynamic tree algorithm." The implementa-

tion of the parallel tree algorithm suggested in Section 5.1 is due to the

author, as is the analysis of Sections 5.2 and 5.3, and as are any errors that

the reader may have found.
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